Add links
LeDock
Original author(s)Lephar
Developer(s)Hongtao Zhao
Initial release12 June 2014; 9 years ago (2014-06-12) (Windows version)[1]
Written inC++
Operating systemLinux, macOS, and Windows
TypeMolecular docking
Websitewww.lephar.com/software.htm

LeDock is a molecular docking software designed for protein-ligand interactions, compatible with Linux, macOS, and Windows.[2][3][4] It supports the Tripos Mol2 file format and employs a simulated annealing and genetic algorithm approach for docking. Utilizing a knowledge-based scoring scheme, it is categorized as a flexible docking method.

Performance

In performance evaluations, LeDock demonstrated strong sampling power and outperformed other commercial and academic alternatives, including, notably Autodock Vina.[5] According to a review from 2017, LeDock was noted for its effectiveness in sampling ligand conformational space, identifying near-native binding poses, and having a flexible docking protocol. The Linux version includes tools for high-throughput virtual screening in the cloud.

See also

References

  1. ^ "Lephar Research is pleased to announce the release of Windows version of LeDock". Lephar Research (Archived). 2014-06-12. Archived from the original on 2014-12-17. Retrieved 2023-08-22.
  2. ^ Wang Z, Sun H, Yao X, Li D, Xu L, Li Y, Tian S, Hou T (2016). "Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power". Physical Chemistry Chemical Physics. 18 (18): 12964–12975. Bibcode:2016PCCP...1812964W. doi:10.1039/C6CP01555G. PMID 27108770. S2CID 25603164 – via RSC Publishing.
  3. ^ Zhao, Hongtao (2021). "User Guide for LeDock" (PDF). Lephar. Archived (PDF) from the original on June 15, 2022. Retrieved August 15, 2023.
  4. ^ "Applications of LeDock Software". Computational Biology Platform. CD ComputaBio. Retrieved August 15, 2023.
  5. ^ Wang, Zhe; Sun, Huiyong; Yao, Xiaojun; Li, Dan; Xu, Lei; Li, Youyong; Tian, Sheng; Hou, Tingjun (2016-05-04). "Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and scoring power". Physical Chemistry Chemical Physics. 18 (18): 12964–12975. doi:10.1039/C6CP01555G. ISSN 1463-9084.

External links