Edit links
Target chamber of the Shiva laser, used for inertial confinement fusion experiments from 1978 until decommissioned in 1981
Plasma chamber of TFTR, used for magnetic confinement fusion experiments, which produced 11 MW of fusion power in 1994

Experiments directed toward developing fusion power are invariably done with dedicated machines which can be classified according to the principles they use to confine the plasma fuel and keep it hot.

The major division is between magnetic confinement and inertial confinement. In magnetic confinement, the tendency of the hot plasma to expand is counteracted by the Lorentz force between currents in the plasma and magnetic fields produced by external coils. The particle densities tend to be in the range of 1018 to 1022 m−3 and the linear dimensions in the range of 0.1 to 10 m. The particle and energy confinement times may range from under a millisecond to over a second, but the configuration itself is often maintained through input of particles, energy, and current for times that are hundreds or thousands of times longer. Some concepts are capable of maintaining a plasma indefinitely.

In contrast, with inertial confinement, there is nothing to counteract the expansion of the plasma. The confinement time is simply the time it takes the plasma pressure to overcome the inertia of the particles, hence the name. The densities tend to be in the range of 1031 to 1033 m−3 and the plasma radius in the range of 1 to 100 micrometers. These conditions are obtained by irradiating a millimeter-sized solid pellet with a nanosecond laser or ion pulse. The outer layer of the pellet is ablated, providing a reaction force that compresses the central 10% of the fuel by a factor of 10 or 20 to 103 or 104 times solid density. These microplasmas disperse in a time measured in nanoseconds. For a fusion power reactor, a repetition rate of several per second will be needed.

Magnetic confinement

Within the field of magnetic confinement experiments, there is a basic division between toroidal and open magnetic field topologies. Generally speaking, it is easier to contain a plasma in the direction perpendicular to the field than parallel to it. Parallel confinement can be solved either by bending the field lines back on themselves into circles or, more commonly, toroidal surfaces, or by constricting the bundle of field lines at both ends, which causes some of the particles to be reflected by the mirror effect. The toroidal geometries can be further subdivided according to whether the machine itself has a toroidal geometry, i.e., a solid core through the center of the plasma. The alternative is to dispense with a solid core and rely on currents in the plasma to produce the toroidal field.

Mirror machines have advantages in a simpler geometry and a better potential for direct conversion of particle energy to electricity. They generally require higher magnetic fields than toroidal machines, but the biggest problem has turned out to be confinement. For good confinement there must be more particles moving perpendicular to the field than there are moving parallel to the field. Such a non-Maxwellian velocity distribution is, however, very difficult to maintain and energetically costly.

The mirrors' advantage of simple machine geometry is maintained in machines which produce compact toroids, but there are potential disadvantages for stability in not having a central conductor and there is generally less possibility to control (and thereby optimize) the magnetic geometry. Compact toroid concepts are generally less well developed than those of toroidal machines. While this does not necessarily mean that they cannot work better than mainstream concepts, the uncertainty involved is much greater.

Somewhat in a class by itself is the Z-pinch, which has circular field lines. This was one of the first concepts tried, but it did not prove very successful. Furthermore, there was never a convincing concept for turning the pulsed machine requiring electrodes into a practical reactor.

The dense plasma focus is a controversial and "non-mainstream" device that relies on currents in the plasma to produce a toroid. It is a pulsed device that depends on a plasma that is not in equilibrium and has the potential for direct conversion of particle energy to electricity. Experiments are ongoing to test relatively new theories to determine if the device has a future.

Toroidal machine

Toroidal machines can be axially symmetric, like the tokamak and the reversed field pinch (RFP), or asymmetric, like the stellarator. The additional degree of freedom gained by giving up toroidal symmetry might ultimately be usable to produce better confinement, but the cost is complexity in the engineering, the theory, and the experimental diagnostics. Stellarators typically have a periodicity, e.g. a fivefold rotational symmetry. The RFP, despite some theoretical advantages such as a low magnetic field at the coils, has not proven very successful.

Tokamak[1]

Device name Status Construction Operation Location Organisation Major/minor radius B-field Plasma current Purpose Image
T-1 (Tokamak-1)[2] Shut down 1957 1958–1959 Soviet Union Moscow Kurchatov Institute 0.625 m/0.13 m 1 T 0.04 MA First tokamak T-1
T-2 (Tokamak-2)[2] Recycled →FT-1 1959 1960–1970 Soviet Union Moscow Kurchatov Institute 0.62 m/0.22 m 1 T 0.04 MA
T-3 (Tokamak-3)[2] Shut down 1960 1962–? Soviet Union Moscow Kurchatov Institute 1 m/0.12 m 3.5 T 0.15 MA Overcame Bohm diffusion by a factor of 10, temperature 10 MK, confinement time 10 ms
T-5 (Tokamak-5)[2] Shut down ? 1962–1970 Soviet Union Moscow Kurchatov Institute 0.625 m/0.15 m 1.2 T 0.06 MA Investigation of plasma equilibrium in vertical and horizontal direction
TM-1 Shut down ? ? Soviet Union Moscow Kurchatov Institute
TM-2 Shut down ? 1965 Soviet Union Moscow Kurchatov Institute
TM-3 Shut down ? 1970 Soviet Union Moscow Kurchatov Institute
FT-1[2] Recycled →CASTOR T-2 1972–2002 Soviet Union Saint Petersburg Ioffe Institute 0.62 m/0.22 m 1.2 T 0.05 MA
ST (Symmetric Tokamak) Shut down Model C 1970–1974 United States Princeton Princeton Plasma Physics Laboratory 1.09 m/0.13 m 5.0 T 0.13 MA First American tokamak, converted from Model C stellarator
T-6 (Tokamak-6) Shut down ? 1970–1974 Soviet Union Moscow Kurchatov Institute 0.7 m/0.25 m 1.5 T 0.22 MA
TUMAN-2, 2A Shut down ? 1971–1985 Soviet Union Saint Petersburg Ioffe Institute 0.4 m/0.08 m 1.5 T 0.012 MA
ORMAK (Oak Ridge tokaMAK) Shut down 1971–1976 United States Oak Ridge Oak Ridge National Laboratory 0.8 m/0.23 m 2.5 T 0.34 MA First to achieve 20 MK plasma temperature ORMAK plasma vessel
Doublet II Shut down 1972–1974 United States San Diego General Atomics 0.63 m/0.08 m 0.95 T 0.21 MA [1]
ATC (Adiabatic Toroidal Compressor) Shut down 1971–1972 1972–1976 United States Princeton Princeton Plasma Physics Laboratory 0.88 m/0.11 m 2 T 0.05 MA Demonstrate compressional plasma heating Schematic of ATC
T-9 (Tokamak-9) Shut down ? 1972–1977 Soviet Union Moscow Kurchatov Institute 0.36 m/0.07 m 1 T
TO-1 Shut down ? 1972–1978 Soviet Union Moscow Kurchatov Institute 0.6 m/0.13 m 1.5 T 0.07 MA
Alcator A (Alto Campo Toro) Shut down ? 1972–1978 United States Cambridge Massachusetts Institute of Technology 0.54 m/0.10 m 9.0 T 0.3 MA
JFT-2 (JAERI Fusion Torus 2) Shut down ? 1972–1982 Japan Naka Japan Atomic Energy Research Institute 0.9 m/0.25 m 1.8 T 0.25 MA
Turbulent Tokamak Frascati (TTF, torello) Shut down 1973 Italy Frascati ENEA 0.3 m/0.04 m 1 T 0.005 MA Study of turbulent plasma heating [2]
Pulsator[3] Shut down 1970–1973 1973–1979 Germany Garching Max Planck Institute for Plasma Physics 0.7 m/0.12 m 2.7 T 0.125 MA Discovery of high-density operation with tokamaks [3]
TFR (Tokamak de Fontenay-aux-Roses) Shut down 1973–1984 France Fontenay-aux-Roses CEA 0.98 m/0.2 m 6 T 0.49 MA [4]
T-4 (Tokamak-4)[2] Shut down ? 1974–1978 Soviet Union Moscow Kurchatov Institute 0.9 m/0.16 m 5 T 0.3 MA Observed fast thermal quench before major plasma disruptions
Doublet IIA Shut down 1974–1979 United States San Diego General Atomics 0.66 m/0.15 m 0.76 T 0.35 MA
Petula-B Shut down ? 1974–1986 France Grenoble CEA 0.72 m/0.18 m 2.7 T 0.23 MA
T-10 (Tokamak-10)[2] Operational 1975– Soviet Union Moscow Kurchatov Institute 1.50 m/0.37 m 4 T 0.8 MA Largest tokamak of its time Model of the T-10
T-11 (Tokamak-11) Shut down ? 1975–1984 Soviet Union Moscow Kurchatov Institute 0.7 m/0.25 m 1 T
PLT (Princeton Large Torus) Shut down 1972–1975 1975–1986 United States Princeton Princeton Plasma Physics Laboratory 1.32 m/0.42 m 4 T 0.7 MA First to achieve 1 MA plasma current Construction of the Princeton Large Torus
Divertor Injection Tokamak Experiment (DITE) Shut down 1975–1989 United Kingdom Culham Culham Centre for Fusion Energy 1.17 m/0.27 m 2.7 T 0.26 MA
JIPP T-II Shut down ? 1976 Japan Nagoya Nagoya University 0.91 m/0.17 m 3 T 0.16 MA
TNT-A Shut down ? 1976 Japan Tokyo Tokyo University 0.4 m/0.09 m 0.42 T 0.02 MA
T-8 (Tokamak-8)[2] Shut down ? 1976–? Soviet Union Moscow Kurchatov Institute 0.28 m/0.048 m 0.9 T 0.024 MA First D-shaped tokamak
Microtor[4] Shut down ? 1976–1983? United States Los Angeles UCLA 0.3 m/0.1 m 2.5 T 0.12 MA Plasma impurity control and diagnostic development
Macrotor[4] Shut down ? 1970s–80s United States Los Angeles UCLA 0.9 m/0.4 m 0.4 T 0.1 MA Understanding plasma rotation driven by radial current
TUMAN-3[2] Operational ? 1977–
(1990–, 3M)
Soviet Union Saint Petersburg Ioffe Institute 0.55 m/0.23 m 3 T 0.18 MA Study adiabatic compression, RF and NB heating, H-mode and parametric instability
Thor[5] Shut down ? Italy Milano University of Milano 0.52 m/0.195 m 1 T 0.055 MA [5]
FT (Frascati Tokamak) Shut down 1978 Italy Frascati ENEA 0.83 m/0.20 m 10 T 0.8 MA
PDX (Poloidal Divertor Experiment) Shut down ? 1978–1983 United States Princeton Princeton Plasma Physics Laboratory 1.4 m/0.4 m 2.4 T 0.5 MA
ISX-B Shut down ? 1978–1984 United States Oak Ridge Oak Ridge National Laboratory 0.93 m/0.27 m 1.8 T 0.2 MA Superconducting coils, attempt high-beta operation
Doublet III Shut down 1978–1985 United States San Diego General Atomics 1.45 m/0.45 m 2.6 T 0.61 MA [6]
T-12 (Tokamak-12) Shut down ? 1978–1985 Soviet Union Moscow Kurchatov Institute 0.36 m/0.08 m 1 T 0.03 MA
Alcator C (Alto Campo Toro) Shut down ? 1978–1986 United States Cambridge Massachusetts Institute of Technology 0.64 m/0.16 m 13 T 0.8 MA
T-7 (Tokamak-7)[2] Recycled →HT-7[6] ? 1979–1985 Soviet Union Moscow Kurchatov Institute 1.2 m/0.31 m 3 T 0.3 MA First tokamak with superconducting toroidal field coils
ASDEX (Axially Symmetric Divertor Experiment)[7] Recycled →HL-2A 1973–1980 1980–1990 Germany Garching Max-Planck-Institut für Plasmaphysik 1.65 m/0.4 m 2.8 T 0.5 MA Discovery of the H-mode in 1982 [7]
FT-2[2] Operational ? 1980– Soviet Union Saint Petersburg Ioffe Institute 0.55 m/0.08 m 3 T 0.05 MA H-mode physics, LH heating
TEXTOR (Tokamak Experiment for Technology Oriented Research)[8][9] Shut down 1976–1980 1981–2013 Germany Jülich Forschungszentrum Jülich 1.75 m/0.47 m 2.8 T 0.8 MA Study plasma-wall interactions
TFTR (Tokamak Fusion Test Reactor)[10] Shut down 1980–1982 1982–1997 United States Princeton Princeton Plasma Physics Laboratory 2.4 m/0.8 m 5.9 T 3 MA Attempted scientific break-even, reached record fusion power of 10.7 MW and temperature of 510 MK TFTR plasma vessel
JFT-2M (JAERI Fusion Torus 2M) Shut down ? 1983–2004 Japan Naka Japan Atomic Energy Research Institute 1.3 m/0.35 m 2.2 T 0.5 MA [8]
JET (Joint European Torus)[11] Shut down 1978–1983 1983–2023 United Kingdom Culham Culham Centre for Fusion Energy 2.96 m/0.96 m 4 T 7 MA Records for fusion output power 16.1 MW (1997), fusion energy 69 MJ (2023) JET in 1991
Novillo[12][13] Shut down NOVA-II 1983–2004 Mexico Mexico City Instituto Nacional de Investigaciones Nucleares 0.23 m/0.06 m 1 T 0.01 MA Study plasma-wall interactions
JT-60 (Japan Torus-60)[14] Recycled →JT-60SA 1985–2010 Japan Naka Japan Atomic Energy Research Institute 3.4 m/1.0 m 4 T 3 MA High-beta steady-state operation, highest fusion triple product
CCT (Continuous Current Tokamak) Shut down ? 1986–199? United States Los Angeles UCLA 1.5 m/0.4 m 0.2 T 0.05 MA H-mode studies
DIII-D[15] Operational 1986[16] 1986– United States San Diego General Atomics 1.67 m/0.67 m 2.2 T 3 MA Tokamak Optimization DIII-D vacuum vessel
STOR-M (Saskatchewan Torus-Modified)[17] Operational 1987– Canada Saskatoon Plasma Physics Laboratory (Saskatchewan) 0.46 m/0.125 m 1 T 0.06 MA Study plasma heating and anomalous transport [9]
T-15[2] Recycled →T-15MD 1983–1988 1988–1995 Soviet Union Moscow Kurchatov Institute 2.43 m/0.78 m 3.6 T 1 MA First superconducting tokamak, pulse duration 1.5 s T-15 on a stamp
Tore Supra[18] Recycled →WEST 1988–2011 France Cadarache Département de Recherches sur la Fusion Contrôlée 2.25 m/0.7 m 4.5 T 2 MA Large superconducting tokamak with active cooling
ADITYA (tokamak) Operational 1989– India Gandhinagar Institute for Plasma Research 0.75 m/0.25 m 1.2 T 0.25 MA
COMPASS (COMPact ASSembly)[19][20] Operational 1980– 1989– Czech Republic Prague Institute of Plasma Physics AS CR 0.56 m/0.23 m 2.1 T 0.32 MA Plasma physics studies for ITER COMPASS plasma chamber
FTU (Frascati Tokamak Upgrade) Operational 1990– Italy Frascati ENEA 0.935 m/0.35 m 8 T 1.6 MA [10]
START (Small Tight Aspect Ratio Tokamak)[21] Recycled →Proto-Sphera 1990–1998 United Kingdom Culham Culham Centre for Fusion Energy 0.3 m/? 0.5 T 0.31 MA First full-sized Spherical Tokamak [11]
ASDEX Upgrade (Axially Symmetric Divertor Experiment) Operational 1991– Germany Garching Max-Planck-Institut für Plasmaphysik 1.65 m/0.5 m 2.6 T 1.4 MA ASDEX Upgrade plasma vessel segment
Alcator C-Mod (Alto Campo Toro)[22] Shut down 1986– 1991–2016 United States Cambridge Massachusetts Institute of Technology 0.68 m/0.22 m 8 T 2 MA Record plasma pressure 2.05 bar Alcator C-Mod plasma vessel
ISTTOK (Instituto Superior Técnico TOKamak)[23] Operational 1992– Portugal Lisbon Instituto de Plasmas e Fusão Nuclear 0.46 m/0.085 m 2.8 T 0.01 MA
TCV (Tokamak à Configuration Variable)[24] Operational 1992– Switzerland Lausanne École Polytechnique Fédérale de Lausanne 0.88 m/0.25 m 1.43 T 1.2 MA Confinement studies TCV plasma vessel
HBT-EP (High Beta Tokamak-Extended Pulse) Operational 1993– United States New York City Columbia University Plasma Physics Laboratory 0.92 m/0.15 m 0.35 T 0.03 MA High-Beta tokamak HBT-EP sketch
HT-7 (Hefei Tokamak-7) Shut down 1991–1994 (T-7) 1995–2013 China Hefei Hefei Institutes of Physical Science 1.22 m/0.27 m 2 T 0.2 MA China's first superconducting tokamak
Pegasus Toroidal Experiment[25] Operational ? 1996– United States Madison University of Wisconsin–Madison 0.45 m/0.4 m 0.18 T 0.3 MA Extremely low aspect ratio Pegasus Toroidal Experiment
NSTX (National Spherical Torus Experiment)[26] Operational 1999– United States Plainsboro Township Princeton Plasma Physics Laboratory 0.85 m/0.68 m 0.3 T 2 MA Study the spherical tokamak concept National Spherical Torus Experiment
Globus-M (UNU Globus-M)[27] Operational 1999– Russia Saint Petersburg Ioffe Institute 0.36 m/0.24 m 0.4 T 0.3 MA Study the spherical tokamak concept
ET (Electric Tokamak) Recycled →ETPD 1998 1999–2006 United States Los Angeles UCLA 5 m/1 m 0.25 T 0.045 MA Largest tokamak of its time The Electric Tokamak.jpg
TCABR (Tokamak Chauffage Alfvén Brésilien) Operational 1980–1999 1999– Switzerland Lausanne,
Brazil Sao Paulo
University of Sao Paulo 0.615 m / 0.18 m 1.1 T 0.10 MA Most important tokamak in the southern hemisphere
CDX-U (Current Drive Experiment-Upgrade) Recycled →LTX 2000–2005 United States Princeton Princeton Plasma Physics Laboratory 0.3 m/? 0.23 T 0.03 MA Study Lithium in plasma walls CDX-U setup
MAST (Mega-Ampere Spherical Tokamak)[28] Recycled →MAST-Upgrade 1997–1999 2000–2013 United Kingdom Culham Culham Centre for Fusion Energy 0.85 m/0.65 m 0.55 T 1.35 MA Investigate spherical tokamak for fusion Plasma in MAST
HL-2A (Huan-Liuqi-2A) Operational 2000–2002 2002–2018 China Chengdu Southwestern Institute of Physics 1.65 m/0.4 m 2.7 T 0.43 MA H-mode physics, ELM mitigation [12]
SST-1 (Steady State Superconducting Tokamak)[29] Operational 2001– 2005– India Gandhinagar Institute for Plasma Research 1.1 m/0.2 m 3 T 0.22 MA Produce a 1000 s elongated double null divertor plasma
EAST (Experimental Advanced Superconducting Tokamak)[30] Operational 2000–2005 2006– China Hefei Hefei Institutes of Physical Science 1.85 m/0.43 m 3.5 T 0.5 MA Superheated plasma for over 101 s at 120 M°C and 20 s at 160 M°C[31] Drawing of EAST
J-TEXT (Joint TEXT) Operational TEXT (Texas EXperimental Tokamak) 2007– China Wuhan Huazhong University of Science and Technology 1.05 m/0.26 m 2.0 T 0.2 MA Develop plasma control [13]
KSTAR (Korea Superconducting Tokamak Advanced Research)[32] Operational 1998–2007 2008– South Korea Daejeon National Fusion Research Institute 1.8 m/0.5 m 3.5 T 2 MA Tokamak with fully superconducting magnets, 48 s-long operation at 100 MK[33] KSTAR
LTX (Lithium Tokamak Experiment) Operational 2005–2008 2008– United States Princeton Princeton Plasma Physics Laboratory 0.4 m/? 0.4 T 0.4 MA Study Lithium in plasma walls Lithium Tokamak Experiment plasma vessel
QUEST (Q-shu University Experiment with Steady-State Spherical Tokamak)[34] Operational 2008– Japan Kasuga Kyushu University 0.68 m/0.4 m 0.25 T 0.02 MA Study steady state operation of a Spherical Tokamak QUEST
Kazakhstan Tokamak for Material testing (KTM) Operational 2000–2010 2010– Kazakhstan Kurchatov National Nuclear Center of the Republic of Kazakhstan 0.86 m/0.43 m 1 T 0.75 MA Testing of wall and divertor
ST25-HTS[35] Operational 2012–2015 2015– United Kingdom Culham Tokamak Energy Ltd 0.25 m/0.125 m 0.1 T 0.02 MA Steady state plasma ST25-HTS with plasma
WEST (Tungsten Environment in Steady-state Tokamak) Operational 2013–2016 2016– France Cadarache Département de Recherches sur la Fusion Contrôlée 2.5 m/0.5 m 3.7 T 1 MA Superconducting tokamak with active cooling WEST chamber
ST40[36] Operational 2017–2018 2018– United Kingdom Didcot Tokamak Energy Ltd 0.4 m/0.3 m 3 T 2 MA First high field spherical tokamak ST40 engineering drawing
MAST-U (Mega-Ampere Spherical Tokamak Upgrade)[37] Operational 2013–2019 2020– United Kingdom Culham Culham Centre for Fusion Energy 0.85 m/0.65 m 0.92 T 2 MA Test new exhaust concepts for a spherical tokamak [14]
HL-2M (Huan-Liuqi-2M)[38] Operational 2018–2019 2020– China Leshan Southwestern Institute of Physics 1.78 m/0.65 m 2.2 T 1.2 MA Elongated plasma with 200 MK HL-2M
JT-60SA (Japan Torus-60 super, advanced)[39] Operational 2013–2020 2021– Japan Naka Japan Atomic Energy Research Institute 2.96 m/1.18 m 2.25 T 5.5 MA Optimise plasma configurations for ITER and DEMO with full non-inductive steady-state operation panorama of JT-60SA
T-15MD Operational 2010–2020 2021– Russia Moscow Kurchatov Institute 1.48 m/0.67 m 2 T 2 MA Hybrid fusion/fission reactor T-15MD coil system
ITER[40] Under construction 2013–2025? 2025? France Cadarache ITER Council 6.2 m/2.0 m 5.3 T 15 MA ? Demonstrate feasibility of fusion on a power-plant scale with 500 MW fusion power Small-scale model of ITER
SPARC[41][42][43][44][45] Under construction 2021– 2025 United States Devens, MA Commonwealth Fusion Systems and MIT Plasma Science and Fusion Center 1.85 m/0.57 m 12.2 T 8.7 MA Compact, high-field tokamak with ReBCO coils and 100 MW planned fusion power Artist's impression of SPARC
DTT (Divertor Tokamak Test facility)[46][47] Planned 2022–2027? 2027? Italy Frascati ENEA 2.14 m/0.70 m 6 T ? 5.5 MA ? Superconducting tokamak to study power exhaust [15]
SST-2 (Steady State Tokamak-2)[48] Planned 2027? India Gujarat Institute for Plasma Research 4.42 m/1.47 m 5.42 T 11.2 MA Full-fledged fusion reactor with tritium breeding and up to 500 MW output
CFETR (China Fusion Engineering Test Reactor)[49] Planned ≥2023 2030? China Institute of Plasma Physics, Chinese Academy of Sciences 7.2 m/2.2 m ? 6.5 T ? 14 MA ? Bridge gaps between ITER and DEMO, planned fusion power 1000 MW [16]
ST-F1 (Spherical Tokamak - Fusion 1)[50] Planned 2027? United Kingdom Didcot Tokamak Energy Ltd 1.4 m/0.8 m ? 4 T 5 MA Spherical tokamak with Q=3 and hundreds of MW planned electrical output
STEP (Spherical Tokamak for Energy Production) Planned 2032-2040 2040 D-D
Mid 2040s DT Campaign
United Kingdom Gainsborough Culham Centre for Fusion Energy 3 m/2 m ? ? 16.5 MA ? Spherical tokamak with 100MW planned electrical output [17][51]
IGNITOR[52] Planned[53] ? ? Russia Troitzk ENEA 1.32 m/0.47 m 13 T 11 MA ? Compact fusion reactor with self-sustained plasma and 100 MW of planned fusion power
JA-DEMO Planned 2030? 2050? Japan ? 8.5 m/2.4 m[54] 5.94 T 12.3 MA Prototype for development of Commercial Fusion Reactors 1.5-2GW Fusion output.[55] [18]
K-DEMO (Korean fusion demonstration tokamak reactor)[56] Planned 2037? South Korea National Fusion Research Institute 6.8 m/2.1 m 7 T 12 MA ? Prototype for the development of commercial fusion reactors with around 2200 MW of fusion power Engineering drawing of planned KDEMO
DEMO (DEMOnstration Power Station) Planned 2040? 2050? ? 9 m/3 m ? 6 T ? 20 MA ? Prototype for a commercial fusion reactor Artist's conception of DEMO

Stellarator

Device name Status Construction Operation Type Location Organisation Major/minor radius B-field Purpose Image
Model A Shut down 1952–1953 1953–? Figure-8 United States Princeton Princeton Plasma Physics Laboratory 0.3 m/0.02 m 0.1 T First stellarator, table-top device [19]
Model B Shut down 1953–1954 1954–1959 Figure-8 United States Princeton Princeton Plasma Physics Laboratory 0.3 m/0.02 m 5 T Development of plasma diagnostics
Model B-1 Shut down ?–1959 Figure-8 United States Princeton Princeton Plasma Physics Laboratory 0.25 m/0.02 m 5 T Yielded 1 MK plasma temperatures, showed cooling by X-ray radiation from impurities
Model B-2 Shut down 1957 Figure-8 United States Princeton Princeton Plasma Physics Laboratory 0.3 m/0.02 m 5 T Electron temperatures up to 10 MK [20]
Model B-3 Shut down 1957 1958– Figure-8 United States Princeton Princeton Plasma Physics Laboratory 0.4 m/0.02 m 4 T Last figure-8 device, confinement studies of ohmically heated plasma
Model B-64 Shut down 1955 1955 Square United States Princeton Princeton Plasma Physics Laboratory ? m/0.05 m 1.8 T
Model B-65 Shut down 1957 1957 Racetrack United States Princeton Princeton Plasma Physics Laboratory [21]
Model B-66 Shut down 1958 1958–? Racetrack United States Princeton Princeton Plasma Physics Laboratory
Wendelstein 1-A Shut down 1960 Racetrack Germany Garching Max-Planck-Institut für Plasmaphysik 0.35 m/0.02 m 2 T ℓ=3 showed that stellarators can overcome Bohm diffusion, "Munich mystery"
Wendelstein 1-B Shut down 1960 Racetrack Germany Garching Max-Planck-Institut für Plasmaphysik 0.35 m/0.02 m 2 T ℓ=2
Model C Recycled →ST 1957–1961 1961–1969 Racetrack United States Princeton Princeton Plasma Physics Laboratory 1.9 m/0.07 m 3.5 T Suffered from large plasma losses by Bohm diffusion through "pump-out"
L-1 Shut down 1963 1963–1971 round Soviet Union Moscow Lebedev Physical Institute 0.6 m/0.05 m 1 T First Soviet stellarator, overcame Bohm diffusion
SIRIUS Shut down 1964–? Racetrack Soviet Union Kharkiv Kharkiv Institute of Physics and Technology (KIPT)
TOR-1 Shut down 1967 1967–1973 Soviet Union Moscow Lebedev Physical Institute 0.6 m/0.05 m 1 T
TOR-2 Shut down ? 1967–1973 Soviet Union Moscow Lebedev Physical Institute 0.63 m/0.036 m 2.5 T
Uragan-1 Shut down 1960–1967 1967–? Racetrack Soviet Union Kharkiv National Science Center, Kharkiv Institute of Physics and Technology (NSC KIPT) 1.1 m/0.1 m 1 T Overcame Bohm-diffusion by a factor of 30
CLASP (Closed Line And Single Particle)[57] Shut down ? 1967–? United Kingdom Culham Culham Centre for Fusion Energy 0.3 m/0.056 m 0.1 T Study confinement of electrons in a high-shear stellarator
TWIST[57] Shut down ? 1967–? United Kingdom Culham Culham Centre for Fusion Energy 0.32 m/0.045 m 0.3 T Study turbulent heating
Proto-CLEO[57] Shut down ? 1968–? single-turn helical winding inside toroidal field conductors United Kingdom Culham,
United States Madison
Culham Centre for Fusion Energy 0.4 m/0.05 m 0.5 T confirmed plasma confinement times of neoclassical theory
TORSO[57] Shut down ? 1972–? Ultimate torsatron United Kingdom Culham Culham Centre for Fusion Energy 0.4 m/0.05 m 2 T
CLEO[57] Shut down ? 1974–? United Kingdom Culham Culham Centre for Fusion Energy 0.9 m/0.125 m 2 T Study of particle transport and beta limits, reached similar performance as tokamaks
Wendelstein 2-A Shut down 1965–1968 1968–1974 Heliotron Germany Garching Max-Planck-Institut für Plasmaphysik 0.5 m/0.05 m 0.6 T Good plasma confinement Wendelstein 2-A
Saturn[58] Shut down 1970 1970–? Torsatron Soviet Union Kharkiv Kharkiv Institute of Physics and Technology 0.36 m/0.08 m 1 T first Torsatron, ℓ=3, m=8 field periods, base for several torsatrons at KIPT
Wendelstein 2-B Shut down ?–1970 1971–? Heliotron Germany Garching Max-Planck-Institut für Plasmaphysik 0.5 m/0.055 m 1.25 T Demonstrated similar performance as tokamaks Wendelstein 2-B
Vint-20[59] Shut down 1972 1973–? Torsatron Soviet Union Kharkiv Kharkiv Institute of Physics and Technology 0.315 m/0.0725 m 1.8 T single-pole ℓ=1, m=13 field periods
L-2 Shut down ? 1975–? Soviet Union Moscow Lebedev Physical Institute 1 m/0.11 m 2.0 T
WEGA (Wendelstein Experiment in Greifswald für die Ausbildung) Recycled →HIDRA 1972–1975 1975–2013 Classical stellarator Germany Greifswald Max-Planck-Institut für Plasmaphysik 0.72 m/0.15 m 1.4 T Test lower hybrid heating WEGA
Wendelstein 7-A Shut down ? 1975–1985 Classical stellarator Germany Garching Max-Planck-Institut für Plasmaphysik 2 m/0.1 m 3.5 T First "pure" stellarator without plasma current, solved stellarator heating problem
Heliotron-E Shut down ? 1980–? Heliotron Japan 2.2 m/0.2 m 1.9 T
Heliotron-DR Shut down ? 1981–? Heliotron Japan 0.9 m/0.07 m 0.6 T
Uragan-3 (M [uk])[60] Operational ? 1982–?[61]
M: 1990–
Torsatron Ukraine Kharkiv National Science Center, Kharkiv Institute of Physics and Technology (NSC KIPT) 1.0 m/0.12 m 1.3 T ?
Auburn Torsatron (AT) Shut down ? 1984–1990 Torsatron United States Auburn Auburn University 0.58 m/0.14 m 0.2 T Auburn Torsatron
Wendelstein 7-AS Shut down 1982–1988 1988–2002 Modular, advanced stellarator Germany Garching Max-Planck-Institut für Plasmaphysik 2 m/0.13 m 2.6 T First computer-optimized stellarator, first H-mode in a stellarator in 1992 Wendelstein 7-AS
Advanced Toroidal Facility (ATF) Shut down 1984–1988[62] 1988–1994 Torsatron United States Oak Ridge Oak Ridge National Laboratory 2.1 m/0.27 m 2.0 T First large American stellarator after Tokamak stampede, high-beta operation, >1h plasma operation Advanced Toroidal Facility
Compact Helical System (CHS) Shut down ? 1989–? Heliotron Japan Toki National Institute for Fusion Science 1 m/0.2 m 1.5 T
Compact Auburn Torsatron (CAT) Shut down ?–1990 1990–2000 Torsatron United States Auburn Auburn University 0.53 m/0.11 m 0.1 T Study magnetic flux surfaces Compact Auburn Torsatron
H-1 (Heliac-1)[63] Operational 1992– Heliac Australia Canberra,
China
Research School of Physical Sciences and Engineering, Australian National University 1.0 m/0.19 m 0.5 T shipped to China in 2017 H-1NF plasma vessel
TJ-K (Tokamak de la Junta Kiel)[64] Operational TJ-IU (1999) 1994– Torsatron Germany Kiel, Stuttgart University of Stuttgart 0.60 m/0.10 m 0.5 T One helical and two vertical coil sets; Teaching; moved from Kiel to Stuttgart in 2005
TJ-II (Tokamak de la Junta II)[65] Operational 1991–1996 1997– flexible Heliac Spain Madrid National Fusion Laboratory, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas 1.5 m/0.28 m 1.2 T Study plasma in flexible configuration CAD drawing of TJ-II
LHD (Large Helical Device)[66] Operational 1990–1998 1998– Heliotron Japan Toki National Institute for Fusion Science 3.5 m/0.6 m 3 T Demonstrated long-term operation of large superconducting coils LHD cross section
HSX (Helically Symmetric Experiment)[67] Operational 1999– Modular, quasi-helically symmetric United States Madison University of Wisconsin–Madison 1.2 m/0.15 m 1 T Investigate plasma transport in quasi-helically-symmetric field, similar to tokamaks HSX with clearly visible non-planar coils
Heliotron J[68] Operational 2000– Heliotron Japan Kyoto Institute of Advanced Energy 1.2 m/0.1 m 1.5 T Study helical-axis heliotron configuration [22]
Columbia Non-neutral Torus (CNT) Operational ? 2004– Circular interlocked coils United States New York City Columbia University 0.3 m/0.1 m 0.2 T Study of non-neutral (mostly electron) plasmas
Uragan-2(M)[60] Operational 1988–2006 2006–[69] Heliotron, Torsatron Ukraine Kharkiv National Science Center, Kharkiv Institute of Physics and Technology (NSC KIPT) 1.7 m/0.22 m 2.4 T ℓ=2 Torsatron [23]
Quasi-poloidal stellarator (QPS)[70][71] Cancelled 2001–2007 Modular United States Oak Ridge Oak Ridge National Laboratory 0.9 m/0.33 m 1.0 T Stellarator research Engineering drawing of the QPS
NCSX (National Compact Stellarator Experiment) Cancelled 2004–2008 Helias United States Princeton Princeton Plasma Physics Laboratory 1.4 m/0.32 m 1.7 T High-β stability CAD drawing of NCSX
Compact Toroidal Hybrid (CTH) Operational ? 2007?– Torsatron United States Auburn Auburn University 0.75 m/0.2 m 0.7 T Hybrid stellarator/tokamak CTH
HIDRA (Hybrid Illinois Device for Research and Applications)[72] Operational 2013–2014 (WEGA) 2014– ? United States Urbana, IL University of Illinois 0.72 m/0.19 m 0.5 T Stellarator and tokamak in one device, capable of long pulse steady-state operation; study plasma-wall interactions HIDRA after its reassembly in Illinois
UST_2[73] Operational 2013 2014– modular three period quasi-isodynamic Spain Madrid Charles III University of Madrid 0.29 m/0.04 m 0.089 T 3D-printed stellarator UST_2 design concept
Wendelstein 7-X[74] Operational 1996–2022 2015– Helias Germany Greifswald Max-Planck-Institut für Plasmaphysik 5.5 m/0.53 m 3 T Steady-state plasma in large fully optimized stellarator Schematic diagram of Wendelstein 7-X
SCR-1 (Stellarator of Costa Rica) Operational 2011–2015 2016– Modular Costa Rica Cartago Costa Rica Institute of Technology 0.14 m/0.042 m 0.044 T SCR-1 vacuum vessel drawing
CFQS (Chinese First Quasi-Axisymmetric Stellarator)[75] Under construction 2017– Helias China Chengdu Southwest Jiaotong University, National Institute for Fusion Science in Japan 1 m/0.25 m 1 T m=2 quasi-axisymmetric stellarator, modular CFQS coils and field

Magnetic mirror

Toroidal Z-pinch

  • Perhapsatron (1953, USA)
  • ZETA (Zero Energy Thermonuclear Assembly) (1957, United Kingdom)

Reversed field pinch (RFP)

Spheromak

Field-reversed configuration (FRC)

Other toroidal machines

  • TMP (Tor s Magnitnym Polem, torus with magnetic field): A porcelain torus with major radius 80 cm, minor radius 13 cm, toroidal field of 1.5 T and plasma current 0.25 MA, predecessor to the first tokamak (1955, USSR)

Open field lines

Plasma pinch

Levitated dipole

Inertial confinement

Laser-driven

Device name Status Construction Operation Description Peak laser power Pulse energy Fusion yield Location Organisation Image
4 pi laser Shut down 196? Semiconductor laser 5 GW 12 J United States Livermore LLNL [24]
Long path laser Shut down 1972 1972 First ICF laser with neodymium doped glass (Nd:glass) as lasing medium 5 GW 50 J United States Livermore LLNL [25]
Single Beam System (SBS) "67" Shut down 1971-1973 1973 Single-beam CO2 laser[81] 200 GW 1 kJ United States Los Alamos LANL
Double Bounce Illumination System (DBIS) Shut down 1972-1974 1974-1990 First private laser fusion effort, YAG laser, neutron yield 104 to 3×105 neutrons 1 kJ 100 nJ United States Ann Arbor, Michigan KMS Fusion
MERLIN (Medium Energy Rod Laser Incorporating Neodymium), N78 laser Shut down 1972-1975 1975-? Nd:glass laser 100 GW 40 J United Kingdom RAF Aldermaston AWE
Cyclops laser Shut down 1975 1975 Single-beam Nd:glass laser, prototype for Shiva[82] 1 TW 270 J United States Livermore LLNL
Janus laser Shut down 1974-1975 1975 Two-beam Nd:glass laser demonstrated laser compression and thermonuclear burn of deuterium–tritium 1 TW 10 J United States Livermore LLNL
Gemini laser, Dual-Beam Module (DBM) Shut down ≤ 1975 1976 Two-beam CO2 laser, tests for Helios 5 TW 2.5 kJ United States Los Alamos LANL
Argus laser Shut down 1976 1976-1981 Two-beam Nd:glass laser, advanced the study of laser-target interaction and paved the way for Shiva 4 TW 2 kJ 3 mJ United States Livermore LLNL
Vulcan laser (Versicolor Ultima Lux Coherens pro Academica Nostra)[83] Operational 1976-1977 1977- 8-beam Nd:glass laser, highest-intensity focussed laser in the world in 2005[84] 1 PW 2.6 kJ United Kingdom Didcot RAL
Shiva laser Shut down 1977 1977-1981 20-beam Nd:glass laser; proof-of-concept for Nova; fusion yield of 1011 neutrons; found that its infrared wavelength of 1062 nm was too long to achieve ignition 30 TW 10.2 kJ 0.1 J United States Livermore LLNL
Helios laser, Eight-Beam System (EBS) Shut down 1975-1978 1978 8-beam CO2 laser; Media at Wikimedia Commons 20 TW 10 kJ United States Los Alamos LANL
HELEN (High Energy Laser Embodying Neodymium) Shut down 1976-1979 1979-2009 Two-beam Nd:glass laser 1 TW 200 J United Kingdom Didcot RAL
ISKRA-4 Operational -1979 1979- 8-beam iodine gas laser, prototype for ISKRA-5[85] 10 TW 2 kJ 6 mJ Soviet Union Sarov RFNC-VNIIEF
Sprite laser[83] Shut down 1981-1983 1983-1995 First high-power Krypton fluoride laser used for target irradiation, λ=249 nm 1 TW 7.5 J United Kingdom Didcot RAL
Gekko XII Operational 1983- 12-beam, Nd:glass laser 500 TW 10 kJ Japan Osaka Institute for Laser Engineering
Novette laser Shut down 1981-1983 1983-1984 Nd:glass laser to validate the Nova design, first X-ray laser[86] 13 TW 18 kJ United StatesLivermore LLNL
Antares laser, High Energy Gas Laser Facility (HEGLF) Shut down 1983[87] 24-beam largest CO2 laser ever built. Missed goal of scientific fusion breakeven, because production of hot electrons in target plasma due to long 10.6 μm wavelength of laser resulted in poor laser/plasma energy coupling[86] 200 TW 40 kJ United States Los Alamos LANL
PHAROS laser Operational 198? Two-beam Nd:glass laser 300 GW 1 kJ United States Washington D.C. NRL
Nova laser Shut down 1984-1999 10-beam NIR and frequency-tripled 351 nm UV laser; fusion yield of 1013 neutrons; attempted ignition, but failed due to fluid instability of targets; led to construction of NIF 1.3 PW 120 kJ 30 J United StatesLivermore LLNL
ISKRA-5 Operational -1989 12-beam iodine gas laser, fusion yield 1010 to 1011 neutrons[85] 100 TW 30 kJ 0.3 J Soviet Union Sarov RFNC-VNIIEF
Aurora laser Shut down ≤ 1988-1989 1990 96-beam Krypton fluoride laser 300 GW 1.3 kJ United States Los Alamos LANL
PALS, formerly "Asterix IV" Operational -1991 1991- Iodine gas laser, λ=1315 nm 3 TW 1 kJ Germany Garching,
Czech Republic Prague
MPQ, CAS
Trident laser Operational 198?-1992 1992-2017 3-beam Nd:glass laser; 2 x 400 J beams, 100 ps – 1 us; 1 beam ~100 J, 600 fs – 2 ns 200 TW 500 J United States Los Alamos LANL
Nike laser Operational ≤ 1991-1994 1994- 56-beam, most-capable Krypton fluoride laser for laser target interactions[88][89] 2.6 TW 3 kJ United States Washington, D.C. NRL
OMEGA laser Operational ?-1995 1995- 60-beam UV frequency-tripled Nd:glass laser, fusion yield 1014 neutrons 60 TW 40 kJ 300 J United States Rochester LLE
Electra Operational Krypton fluoride laser, 5 Hz operation with 90,000+ shots continuous 4 GW 730 J United States Washington D.C. NRL
LULI2000 Operational ? 2003- 6-beam Nd:glass laser, λ=1.06 μm, λ=0.53 μm, λ=0.26 μm 500 GW 600 J France Palaiseau École polytechnique
OMEGA EP Operational 2008- 60-beam UV 1.4 PW 5 kJ United States Rochester LLE
National Ignition Facility (NIF) Operational 1997-2009 2010- 192-beam Nd:glass laser, achieved scientific breakeven with fusion gain of 1.5 and 1.2×1018 neutrons[90] 500 TW 2.05 MJ 3.15 MJ United States Livermore LLNL
Orion Operational 2006-2010 2010- 10-beams, λ=351 nm 200 TW 5 kJ United Kingdom RAF Aldermaston AWE
Laser Mégajoule (LMJ) Operational 1999-2014 2014- Second-largest laser fusion facility, 10 out of 22 beam lines operational in 2022[91] 800 TW 1 MJ France Bordeaux CEA [26]
Laser for Fast Ignition Experiments (LFEX) Operational 2003-2015 2015- High-contrast heating laser for FIREX, λ=1053 nm 2 PW 10 kJ 100 μJ Japan Osaka Institute for Laser Engineering
HiPER (High Power Laser Energy Research Facility) Cancelled 2007-2015 - Pan-European project to demonstrate the technical and economic viability of laser fusion for the production of energy[92] (4 PW) (270 kJ) (25 MJ) European Union
Laser Inertial Fusion Energy (LIFE) Cancelled 2008-2013 - Effort to develop a fusion power plant succeeding NIF (2.2 MJ) (40 MJ) United States Livermore LLNL
ISKRA-6 Planned ? ? 128 beam Nd:glass laser 300 TW? 300 kJ? Russia Sarov RFNC-VNIIEF

Z-pinch

Inertial electrostatic confinement

Magnetized target fusion

References

  1. ^ "International tokamak research". ITER.
  2. ^ a b c d e f g h i j k l Smirnov, V.P. (30 December 2009). "Tokamak foundation in USSR/Russia 1950–1990". Nuclear Fusion. 50 (1): 014003. doi:10.1088/0029-5515/50/1/014003. eISSN 1741-4326. ISSN 0029-5515. S2CID 17487157.
  3. ^ "Pulsator".
  4. ^ a b Taylor, R. J.; Lee, P.; Luhmann, N. C. Jr (1981). ICRF heating, particle transport and fluctuations in tokamaks (PDF) (Report). Archived from the original (PDF) on 2022-02-25.
  5. ^ Argenti, D.; Bonizzoni, G.; Cirant, S.; Corti, S.; Grosso, G.; Lampis, G.; Rossi, L.; Carretta, U.; Jacchia, A.; De Luca, F.; Fontanesi, M. (June 1981). "The Thor tokamak experiment". Il Nuovo Cimento B. 63 (2): 471–486. Bibcode:1981NCimB..63..471A. doi:10.1007/BF02755093. eISSN 1826-9877. S2CID 123205206.
  6. ^ Robert Arnoux (2009-05-18). "From Russia with love".
  7. ^ "ASDEX". www.ipp.mpg.de.
  8. ^ "Forschungszentrum Jülich – Plasmaphysik (IEK-4)". fz-juelich.de (in German).
  9. ^ Progress in Fusion Research – 30 Years of TEXTOR
  10. ^ "Tokamak Fusion Test Reactor". 2011-04-26. Archived from the original on 2011-04-26.
  11. ^ "EFDA-JET, the world's largest nuclear fusion research experiment". 2006-04-30. Archived from the original on 2006-04-30.
  12. ^ ":::. Instituto Nacional de Investigaciones Nucleares | Fusión nuclear ". 2009-11-25. Archived from the original on 2009-11-25.
  13. ^ "All-the-Worlds-Tokamaks". tokamak.info.
  14. ^ Yoshikawa, M. (2006-10-02). "JT-60 Project". Fusion Technology 1978. 2: 1079. Bibcode:1979fute.conf.1079Y. Archived from the original on 2006-10-02.
  15. ^ "diii-d:home [MFE: DIII-D and Theory]". fusion.gat.com. Retrieved 2018-09-04.
  16. ^ "DIII-D National Fusion Facility (DIII-D) | U.S. DOE Office of Science (SC)". science.energy.gov. Retrieved 2018-09-04.
  17. ^ "U of S". 2011-07-06. Archived from the original on 2011-07-06.
  18. ^ "Tore Supra". www-fusion-magnetique.cea.fr. Retrieved 2018-09-04.
  19. ^ "Tokamak Department, Institute of Plasma Physics". 2014-05-12. Archived from the original on 2014-05-12.
  20. ^ "COMPASS – General information". 2013-10-25. Archived from the original on 2013-10-25.
  21. ^ . 2006-04-24 https://web.archive.org/web/20060424061102/http://www.fusion.org.uk/culham/start.htm. Archived from the original on 2006-04-24. {{cite web}}: Missing or empty |title= (help)
  22. ^ "MIT Plasma Science & Fusion Center: research>alcator>". 2015-07-09. Archived from the original on 2015-07-09.
  23. ^ "Centro de Fusão Nuclear". cfn.ist.utl.pt. Archived from the original on 2010-03-07. Retrieved 2012-02-13.
  24. ^ "EPFL". crppwww.epfl.ch.
  25. ^ "Pegasus Toroidal Experiment". pegasus.ep.wisc.edu.
  26. ^ "NSTX-U". nstx-u.pppl.gov. Retrieved 2018-09-04.
  27. ^ "Globus-M experiment". globus.rinno.ru/ (in Russian). Retrieved 2021-10-23.
  28. ^ "MAST – the Spherical Tokamak at UKAEA Culham". 2006-04-21. Archived from the original on 2006-04-21.
  29. ^ "The SST-1 Tokamak Page". 2014-06-20. Archived from the original on 2014-06-20.
  30. ^ "EAST (HT-7U Super conducting Tokamak)----Hefei Institutes of Physical Science, The Chinese Academy of Sciences". english.hf.cas.cn.
  31. ^ "Chinese "Artificial Sun" experimental fusion reactor sets world record for superheated plasma time". The Nation. May 29, 2021.
  32. ^ . 2008-05-30 https://web.archive.org/web/20080530221257/http://www.nfri.re.kr/. Archived from the original on 2008-05-30. {{cite web}}: Missing or empty |title= (help)
  33. ^ McFadden, Christopher (29 March 2024). "South Korean 'artificial sun' reaches 7 times the Sun's core temperature". Interesting Engineering. Retrieved 30 March 2024.
  34. ^ . 2013-11-10 https://web.archive.org/web/20131110043518/http://www.triam.kyushu-u.ac.jp/QUEST_HP/quest_e.html. Archived from the original on 2013-11-10. {{cite web}}: Missing or empty |title= (help)
  35. ^ "ST25 » Tokamak Energy". Archived from the original on 2019-03-26. Retrieved 2018-10-21.
  36. ^ "ST40 » Tokamak Energy".
  37. ^ "Status and Plans on MAST-U". 2016-12-13.
  38. ^ "China completes new tokamak".
  39. ^ "The JT-60SA project". www.jt60sa.org.
  40. ^ "ITER – the way to new energy". ITER.
  41. ^ Harris, Mark (October 4, 2023). "2023 Climate Tech Companies to Watch: Commonwealth and its compact tokamak". MIT Technology Review. Retrieved February 10, 2024.
  42. ^ "SPARC at MIT Plasma Science and Fusion Center".
  43. ^ Creely, A. J.; Greenwald, M. J.; Ballinger, S. B.; Brunner, D.; Canik, J.; Doody, J.; Fülöp, T.; Garnier, D. T.; Granetz, R.; Gray, T. K.; Holland, C. (2020). "Overview of the SPARC tokamak". Journal of Plasma Physics. 86 (5). Bibcode:2020JPlPh..86e8602C. doi:10.1017/S0022377820001257. hdl:1721.1/136131. ISSN 0022-3778.
  44. ^ Chesto, Jon (2021-03-03). "MIT energy startup homes in on fusion, with plans for 47-acre site in Devens". BostonGlobe.com. Retrieved 2021-03-03.
  45. ^ Verma, Pranshu. Nuclear fusion power inches closer to reality. The Washington Post, August 26, 2022.
  46. ^ "The DTT Project". Archived from the original on 2019-03-30. Retrieved 2020-02-21.
  47. ^ "The new Divertor Tokamak Test facility" (PDF). Archived from the original (PDF) on 2020-02-21. Retrieved 2020-02-21.
  48. ^ Srinivasan, R. (2016). "Design and analysis of SST-2 fusion reactor". Fusion Engineering and Design. 112: 240–243. doi:10.1016/j.fusengdes.2015.12.044. ISSN 0920-3796.
  49. ^ Zhuang, G.; Li, G.Q.; Li, J.; Wan, Y.X.; Liu, Y.; Wang, X.L.; Song, Y.T.; Chan, V.; Yang, Q.W.; Wan, B.N.; Duan, X.R.; Fu, P.; Xiao, B.J. (5 June 2019). "Progress of the CFETR design". Nuclear Fusion. 59 (11): 112010. Bibcode:2019NucFu..59k2010Z. doi:10.1088/1741-4326/ab0e27. eISSN 1741-4326. ISSN 0029-5515. S2CID 127585754.
  50. ^ "Energy innovator reaches for the stars".
  51. ^ STEP, UKAEA. "STEP Project Partner Slide Deck". STEP UKAEA Portal. Retrieved 2023-04-04.
  52. ^ "Ignited plasma in Tokamaks – The IGNITOR project". frascati.enea.it. Archived from the original on 2020-04-19.
  53. ^ "CREMLIN WP2 Informal exchange meeting: The Russian-Italian IGNITOR Tokamak Project: Design and status of implementation". DESY-Konferenzverwaltung (Indico). 13 July 2017.
  54. ^ Tobita, Kenji; Hiwatari, Ryoji; Sakamoto, Yoshiteru; Someya, Youji; Asakura, Nobuyuki; Utoh, Hiroyasu; Miyoshi, Yuya; Tokunaga, Shinsuke; Homma, Yuki; Kakudate, Satoshi; Nakajima, Noriyoshi; for Fusion DEMO, the Joint Special Design Team (2019-07-04). "Japan's Efforts to Develop the Concept of JA DEMO During the Past Decade". Fusion Science and Technology. 75 (5): 372–383. Bibcode:2019FuST...75..372T. doi:10.1080/15361055.2019.1600931. ISSN 1536-1055. S2CID 164357381.
  55. ^ Iwai, Yasunori; Edao, Yuki; Kurata, Rie; Isobe, Kanetsugu (2021-05-01). "Basic concept of JA DEMO fuel cycle". Fusion Engineering and Design. 166: 112261. doi:10.1016/j.fusengdes.2021.112261. ISSN 0920-3796. S2CID 233566366.
  56. ^ Kim, K.; Im, K.; Kim, H. C.; Oh, S.; Park, J. S.; Kwon, S.; Lee, Y. S.; Yeom, J. H.; Lee, C. (2015). "Design concept of K-DEMO for near-term implementation". Nuclear Fusion. 55 (5): 053027. Bibcode:2015NucFu..55e3027K. doi:10.1088/0029-5515/55/5/053027. ISSN 0029-5515.
  57. ^ a b c d e Lees, D.J. (1 September 1985). "Culham stellarator programme, 1965–1980". Nuclear Fusion. 25 (9): 1259–1265. doi:10.1088/0029-5515/25/9/044. eISSN 1741-4326. ISSN 0029-5515. S2CID 119660036.
  58. ^ Georgiyevskiy, A. V.; Solodovchenko, S. I.; Voitsenya, V. S. (13 February 2010). "Contributions of the "Saturn" to Modern Stellarator-Torsatron Research". Journal of Fusion Energy. 29 (4): 399–406. Bibcode:2010JFuE...29..399G. doi:10.1007/s10894-010-9284-0. eISSN 1572-9591. ISSN 0164-0313. S2CID 123305093.
  59. ^ Georgievskii, A. V.; Suprunenko, V. A.; Sukhomlin, E. A. (May 1973). "Vint-20 single-helix torsatron machine with three-dimensional magnetic axis". Soviet Atomic Energy. 34 (5): 518–519. doi:10.1007/BF01163768. eISSN 1573-8205. ISSN 0038-531X. S2CID 94405830.
  60. ^ a b "History | ННЦ ХФТИ". kipt.kharkov.ua.
  61. ^ "Uragan-3M | IPP NSC KIPT". ipp.kipt.kharkov.ua.
  62. ^ "ORNL Review v17n3 1984.pdf | ORNL". www.ornl.gov.
  63. ^ Department, Head of; prl@physics.anu.edu.au. "Plasma Research Laboratory – PRL – ANU". prl.anu.edu.au.
  64. ^ "TJ-K – FusionWiki". fusionwiki.ciemat.es.
  65. ^ CIEMAT. "Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas". ciemat.es (in Spanish).
  66. ^ "Large Helical Device Project". lhd.nifs.ac.jp. Archived from the original on 2010-04-12. Retrieved 2006-04-20.
  67. ^ "HSX – Helically Symmetric eXperiment". hsx.wisc.edu.
  68. ^ "Heliotron J Project". iae.kyoto-u.ac.jp/en/joint/heliotron-j.html.
  69. ^ "Uragan-2M | IPP NSC KIPT". ipp.kipt.kharkov.ua.
  70. ^ "QPS Home Page". Archived from the original on 2016-04-24. Retrieved 2018-09-01.
  71. ^ http://qps.fed.ornl.gov/pvr/pdf/qpsentire.pdf
  72. ^ "HIDRA – Hybrid Illinois Device for Research and Applications | CPMI – Illinois". cpmi.illinois.edu.
  73. ^ "Vying Fusion Energy - V. Queral". www.fusionvic.org.
  74. ^ "Wendelstein 7-X". ipp.mpg.de/w7x.
  75. ^ KINOSHITA, Shigeyoshi; SHIMIZU, Akihiro; OKAMURA, Shoichi; ISOBE, Mitsutaka; XIONG, Guozhen; LIU, Haifeng; XU, Yuhong; The CQFS Team (2019-06-03). "Engineering Design of the Chinese First Quasi-Axisymmetric Stellarator (CFQS)". Plasma and Fusion Research. 14: 3405097. Bibcode:2019PFR....1405097K. doi:10.1585/pfr.14.3405097. ISSN 1880-6821.
  76. ^ "CONSORZIO RFX – Ricerca Formazione Innovazione". igi.cnr.it. Archived from the original on 2009-09-01. Retrieved 2018-04-16.
  77. ^ Hartog, Peter Den. "MST – UW Plasma Physics". plasma.physics.wisc.edu. Archived from the original on 2019-03-13. Retrieved 2013-02-28.
  78. ^ Liu, Wandong; et, al. (2017). "Overview of Keda Torus eXperiment initial results". Nuclear Fusion. 57 (11): 116038. Bibcode:2017NucFu..57k6038L. doi:10.1088/1741-4326/aa7f21. ISSN 0029-5515. S2CID 116431906.
  79. ^ "Report Oct 15, 2021" (PDF). 2021-10-15. Archived (PDF) from the original on 2021-10-25.
  80. ^ "Levitated Dipole Experiment". 2004-08-23. Archived from the original on 2004-08-23.
  81. ^ F Skoberne (July 1967). "Los Alamos Laser Fusion Program" (PDF).
  82. ^ "Beam-propagation studies on Cyclops" (PDF). February 1976.
  83. ^ a b Danson, Colin N.; et al. (2021). "A history of high-power laser research and development in the United Kingdom". High Power Laser Science and Engineering. 9. Bibcode:2021HPLSE...9E..18D. doi:10.1017/hpl.2021.5. eISSN 2052-3289. hdl:10044/1/89337. ISSN 2095-4719. S2CID 233401354.
  84. ^ "CLF Get to know the CLF Lasers".
  85. ^ a b "RFNC-VNIIEF – Science – Laser physics". 2005-04-06. Archived from the original on 2005-04-06.
  86. ^ a b Hora, Heinrich; Miley, George H, eds. (1984). Laser Interaction and Related Plasma Phenomena. Springer US. doi:10.1007/978-1-4615-7332-6. ISBN 978-1-4615-7334-0.
  87. ^ Schwarzschild, Bertram M. (1984). "Fusion experiments have begun at Antares". Physics Today. 37 (9): 19. Bibcode:1984PhT....37i..19S. doi:10.1063/1.2916397.
  88. ^ Lehecka, T.; Bodner, S.; Deniz, A. V.; Mostovych, A. N.; Obenschain, S. P.; Pawley, C. J.; Pronko, M. S. (December 1991). "The NIKE KrF laser fusion facility". Journal of Fusion Energy. 10 (4): 301–303. Bibcode:1991JFuE...10..301L. doi:10.1007/BF01052128. eISSN 1572-9591. ISSN 0164-0313. S2CID 122087249.
  89. ^ Obenschain, Stephen; Lehmberg, Robert; Kehne, David; Hegeler, Frank; Wolford, Matthew; Sethian, John; Weaver, James; Karasik, Max; et al. (19 August 2015). "High-energy krypton fluoride lasers for inertial fusion". Applied Optics. 54 (31): F103-22. Bibcode:2015ApOpt..54F.103O. doi:10.1364/AO.54.00F103. eISSN 1539-4522. ISSN 0003-6935. PMID 26560597.
  90. ^ CLERY, DANIEL (13 December 2022). "With historic explosion, a long sought fusion breakthrough". www.science.org. Retrieved 2022-12-14.
  91. ^ "CEA – Laser Mégajoule". www-lmj.cea.fr.
  92. ^ "The HiPER Project". Archived from the original on 2022-12-23.
  93. ^ "University of Nevada, Reno. Nevada Terawatt Facility". archive.is. 2000-09-19. Archived from the original on 2000-09-19.
  94. ^ "Sandia National Laboratories: National Security Programs". sandia.gov.
  95. ^ "PULSOTRON". pulsotron.org. Archived from the original on 2019-04-01. Retrieved 2020-03-09.

See also