Edit links

The survival of some microorganisms exposed to outer space has been studied using both simulated facilities and low Earth orbit exposures. Bacteria were some of the first organisms investigated, when in 1960 a Russian satellite carried Escherichia coli, Staphylococcus, and Enterobacter aerogenes into orbit.[1] Many kinds of microorganisms have been selected for exposure experiments since, as listed in the table below.

Experiments of the adaption of microbes in space have yielded unpredictable results. While sometimes the microorganism may weaken, they can also increase in their disease-causing potency.[1]

It is possible to classify these microorganisms into two groups, the human-borne and the extremophiles. Studying the human-borne microorganisms is significant for human welfare and future crewed missions in space, whilst the extremophiles are vital for studying the physiological requirements of survival in space.[2] NASA has pointed out that normal adults have ten times as many microbial cells as human cells in their bodies.[3] They are also nearly everywhere in the environment and, although normally invisible, can form slimy biofilms.[3]

Extremophiles have adapted to live in some of the most extreme environments on Earth. This includes hypersaline lakes, arid regions, deep sea, acidic sites, cold and dry polar regions and permafrost.[4] The existence of extremophiles has led to the speculation that microorganisms could survive the harsh conditions of extraterrestrial environments and be used as model organisms to understand the fate of biological systems in these environments. The focus of many experiments has been to investigate the possible survival of organisms inside rocks (lithopanspermia),[2] or their survival on Mars for understanding the likelihood of past or present life on that planet.[2] Because of their ubiquity and resistance to spacecraft decontamination, bacterial spores are considered likely potential forward contaminants on robotic missions to Mars. Measuring the resistance of such organisms to space conditions can be applied to develop adequate decontamination procedures.[5]

Research and testing of microorganisms in outer space could eventually be applied for directed panspermia or terraforming.

Table

 Checked indicates testing conditions
Organism Low Earth orbit Impact event and planetary ejection Atmospheric reentry Simulated conditions References
Bacteria & bacterial spores
Actinomyces erythreus
Checked
[6]
Aeromonas proteolytica
Checked
[7]
Anabaena cylindrica (akinetes)
Checked
Checked
[8]
Azotobacter chroococcum
Checked
[9]
Azotobacter vinelandii
Checked
[10]
Bacillus cereus
Checked
[11]
Bacillus megaterium
Checked
[12]
Bacillus mycoides
Checked
[13]
Bacillus pumilus
Checked
[13][14]
Bacillus subtilis
Checked
Checked
Checked
Checked
[15][16][17][18][19]
Bacillus thuringiensis
Checked
[7]
Carnobacterium
Checked
[20]
Chroococcidiopsis
Checked
Checked
Checked
Checked
[21][22][23][24]
Clostridium botulinum
Checked
[12]
Clostridium butyricum
Checked
[25][26]
Clostridium celatum
Checked
[26]
Clostridium mangenotii
Checked
[26]
Clostridium roseum
Checked
[26]
Deinococcus aerius
Checked
[27]
Deinococcus aetherius
Checked
[28]
Deinococcus geothermalis
Checked
Checked
[29]
Deinococcus radiodurans
Checked
Checked
Checked
[30][31][32][33][34]
Enterobacter aerogenes
Checked
[35]
Escherichia coli
Checked
Checked
Checked
[12][26][36][37]
Gloeocapsa
Checked
[24]
Gloeocapsopsis pleurocapsoides
Checked
[38]
Haloarcula-G
Checked
[39]
Hydrogenomonas eutropha
Checked
[36]
Klebsiella pneumoniae
Checked
[12]
Kocuria rosea
Checked
[40]
Lactobacillus plantarum
Checked
[41]
Leptolyngbya
Checked
[38]
Luteococcus japonicus
Checked
[42]
Micrococcus luteus
Checked
[42]
Nostoc commune
Checked
Checked
[24][43]
Nostoc microscopicum
Checked
[38]
Photobacterium
Checked
[42]
Pseudomonas aeruginosa
Checked
Checked
[3][41]
Pseudomonas fluorescens
Checked
[41]
Rhodococcus erythropolis
Checked
[44]
Rhodospirillum rubrum
Checked
[10]
Salmonella enterica
Checked
[45]
Serratia marcescens
Checked
[11]
Serratia plymuthica
Checked
[46]
Staphylococcus aureus
Checked
[25][41]
Streptococcus mutans
Checked
[47]
Streptomyces albus
Checked
[41]
Streptomyces coelicolor
Checked
[47]
Synechococcus (halite)
Checked
[39][48][49]
Synechocystis
Checked
Checked
[50]
Symploca
Checked
[38]
Tolypothrix byssoidea
Checked
[38]
Low Earth orbit
Impact event and planetary ejection
Atmospheric reentry
Simulated conditions
Halobacterium noricense
Checked
[51][52]
Halobacterium salinarum
Checked
[47]
Halococcus dombrowskii
Checked
[51]
Halorubrum chaoviatoris
Checked
[49][53]
Methanosarcina sp. SA-21/16
Checked
[54]
Methanobacterium MC-20
Checked
[54]
Methanosarcina barkeri
Checked
[54]
Low Earth orbit
Impact event and planetary ejection
Atmospheric reentry
Simulated conditions
Aspergillus niger
Checked
[42]
Aspergillus oryzae
Checked
Checked
[30][42]
Aspergillus terreus
Checked
[55]
Aspergillus versicolor
Checked
[56]
Chaetomium globosum
Checked
Checked
[7]
Cladosporium herbarum
Checked
[57]
Cryomyces antarcticus
Checked
Checked
[58][59]
Cryomyces minteri
Checked
Checked
[58]
Euglena gracilis
Checked
Checked
[60][61][62][63]
Mucor plumbeus
Checked
[42]
Nannochloropsis oculata
Checked
[64][65][66]
Penicillium roqueforti
Checked
[15]
Rhodotorula mucilaginosa
Checked
[42]
Sordaria fimicola
Checked
[67]
Trebouxia
Checked
[68]
Trichoderma koningii
Checked
[53]
Trichoderma longibrachiatum
Checked
[69]
Trichophyton terrestre
Checked
[7]
Ulocladium atrum
Checked
[18]
Low Earth orbit
Impact event and planetary ejection
Atmospheric reentry
Simulated conditions
Aspicilia fruticulosa
Checked
Checked
[70]
Buellia frigida
Checked
[71]
Circinaria gyrosa
Checked
Checked
[68][72]
Rhizocarpon geographicum
Checked
Checked
[68][73]
Rosenvingiella
Checked
[24]
Xanthoria elegans
Checked
Checked
Checked
[74][75][76][77][78]
Xanthoria parietina
Checked
Checked
[75]
Low Earth orbit
Impact event and planetary ejection
Atmospheric reentry
Simulated conditions
T7 phage
Checked
[7]
Canine hepatitis
Checked
[79]
Influenza PR8
Checked
[79]
Tobacco mosaic virus
Checked
[47][79]
Vaccinia virus
Checked
[79]
Low Earth orbit
Impact event and planetary ejection
Atmospheric reentry
Simulated conditions
Rhodotorula rubra
Checked
Checked
[7]
Saccharomyces cerevisiae
Checked
Checked
[7]
Saccharomyces ellipsoides
Checked
[36]
Zygosaccharomyces bailii
Checked
[36]
Low Earth orbit
Impact event and planetary ejection
Atmospheric reentry
Simulated conditions
Caenorhabditis elegans
(nematode)
Checked
[80][81]
Hypsibius dujardini
(tardigrade)
Checked
Checked
[82][83]
Milnesium tardigradum
(tardigrade)
Checked
[84][85][86]
Richtersius coronifer
(tardigrade)
Checked
Checked
[84][87]
Mniobia russeola
(rotifer)
Checked
[87]

See also

References

  1. ^ a b Love, Shayla (2016-10-26). "Bacteria get dangerously weird in space". The Independent. Retrieved 2016-10-27.
  2. ^ a b c Olsson-Francis, K.; Cockell, C. S. (2010). "Experimental methods for studying microbial survival in extraterrestrial environments" (PDF). Journal of Microbiological Methods. 80 (1): 1–13. doi:10.1016/j.mimet.2009.10.004. PMID 19854226. Archived from the original (PDF) on 2017-08-11. Retrieved 2013-08-06.
  3. ^ a b c NASA – Spaceflight Alters Bacterial Social Networks (2013)
  4. ^ Rothschild, L. J.; Mancinelli, R. L. (2001). "Life in extreme environments". Nature. 409 (6823): 1092–101. Bibcode:2001Natur.409.1092R. doi:10.1038/35059215. PMID 11234023. S2CID 529873.
  5. ^ Nicholson, W. L.; Moeller, R.; Horneck, G. (2012). "Transcriptomic Responses of Germinating Bacillus subtilis Spores Exposed to 1.5 Years of Space and Simulated Martian Conditions on the EXPOSE-E Experiment PROTECT". Astrobiology. 12 (5): 469–86. Bibcode:2012AsBio..12..469N. doi:10.1089/ast.2011.0748. PMID 22680693.
  6. ^ Dublin, M.; Volz, P. A. (1973). "Space-related research in mycology concurrent with the first decade of manned space exploration". Space Life Sciences. 4 (2): 223–30. Bibcode:1973SLSci...4..223D. doi:10.1007/BF00924469. PMID 4598191. S2CID 11871141.
  7. ^ a b c d e f g Taylor, G. R.; Bailey, J. V.; Benton, E. V. (1975). "Physical dosimetric evaluations in the Apollo 16 microbial response experiment". Life Sciences in Space Research. 13: 135–41. PMID 11913418.
  8. ^ Olsson-Francis, K.; de la Torre, R.; Towner, M. C.; Cockell, C. S. (2009). "Survival of Akinetes (Resting-State Cells of Cyanobacteria) in Low Earth Orbit and Simulated Extraterrestrial Conditions". Origins of Life and Evolution of Biospheres. 39 (6): 565–579. Bibcode:2009OLEB...39..565O. doi:10.1007/s11084-009-9167-4. PMID 19387863. S2CID 7228756.
  9. ^ Moll, D. M.; Vestal, J. R. (1992). "Survival of microorganisms in smectite clays: Implications for Martian exobiology". Icarus. 98 (2): 233–9. Bibcode:1992Icar...98..233M. doi:10.1016/0019-1035(92)90092-L. PMID 11539360.
  10. ^ a b Roberts, T. L.; Wynne, E. S. (1962). "Studies with a simulated Martian environment". Journal of the Astronautical Sciences. 10: 65–74.
  11. ^ a b Hagen, C. A.; Hawrylewicz, E. J.; Ehrlich, R. (1967). "Survival of Microorganisms in a Simulated Martian Environment: II. Moisture and Oxygen Requirements for Germination of Bacillus cereus and Bacillus subtilis var. Niger Spores". Applied Microbiology. 15 (2): 285–291. doi:10.1128/AEM.15.2.285-291.1967. PMC 546892. PMID 4961769.
  12. ^ a b c d Hawrylewicz, E.; Gowdy, B.; Ehrlich, R. (1962). "Micro-organisms under a Simulated Martian Environment". Nature. 193 (4814): 497. Bibcode:1962Natur.193..497H. doi:10.1038/193497a0. S2CID 4149916.
  13. ^ a b Imshenetskiĭ, A. A.; Murzakov, B. G.; Evdokimova, M. D.; Dorofeeva, I. K. (1984). "Survival of bacteria in the Artificial Mars unit". Mikrobiologiia. 53 (5): 731–7. PMID 6439981.
  14. ^ Horneck, G. (2012). "Resistance of Bacterial Endospores to Outer Space for Planetary Protection Purposes—Experiment PROTECT of the EXPOSE-E Mission". Astrobiology. 12 (5): 445–56. Bibcode:2012AsBio..12..445H. doi:10.1089/ast.2011.0737. PMC 3371261. PMID 22680691.
  15. ^ a b Hotchin, J.; Lorenz, P.; Hemenway, C. (1965). "Survival of Micro-Organisms in Space". Nature. 206 (4983): 442–445. Bibcode:1965Natur.206..442H. doi:10.1038/206442a0. PMID 4284122. S2CID 4156325.
  16. ^ Horneck, G.; Bücker, H.; Reitz, G. (1994). "Long-term survival of bacterial spores in space". Advances in Space Research. 14 (10): 41–5. Bibcode:1994AdSpR..14j..41H. doi:10.1016/0273-1177(94)90448-0. PMID 11539977.
  17. ^ Fajardo-Cavazos, P.; Link, L.; Melosh, H. J.; Nicholson, W. L. (2005). "Bacillus subtilisSpores on Artificial Meteorites Survive Hypervelocity Atmospheric Entry: Implications for Lithopanspermia". Astrobiology. 5 (6): 726–36. Bibcode:2005AsBio...5..726F. doi:10.1089/ast.2005.5.726. PMID 16379527.
  18. ^ a b Brandstätter, F. (2008). "Mineralogical alteration of artificial meteorites during atmospheric entry. The STONE-5 experiment". Planetary and Space Science. 56 (7): 976–984. Bibcode:2008P&SS...56..976B. CiteSeerX 10.1.1.549.4307. doi:10.1016/j.pss.2007.12.014.
  19. ^ Wassmann, M. (2012). "Survival of Spores of the UV-ResistantBacillus subtilisStrain MW01 After Exposure to Low-Earth Orbit and Simulated Martian Conditions: Data from the Space Experiment ADAPT on EXPOSE-E". Astrobiology. 12 (5): 498–507. Bibcode:2012AsBio..12..498W. doi:10.1089/ast.2011.0772. PMID 22680695.
  20. ^ Nicholson, Wayne L.; Krivushin, Kirill; Gilichinsky, u; Schuerger, Andrew C. (24 December 2012). "Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars". PNAS USA. 110 (2): 666–671. Bibcode:2013PNAS..110..666N. doi:10.1073/pnas.1209793110. PMC 3545801. PMID 23267097.
  21. ^ Cockell, C. S.; Schuerger, A. C.; Billi, D.; Imre Friedmann, E.; Panitz, C. (2005). "Effects of a Simulated Martian UV Flux on the Cyanobacterium, Chroococcidiopsis sp. 029". Astrobiology. 5 (2): 127–140. Bibcode:2005AsBio...5..127C. doi:10.1089/ast.2005.5.127. PMID 15815164.
  22. ^ Billi, D. (2011). "Damage Escape and Repair in Dried Chroococcidiopsis spp. From Hot and Cold Deserts Exposed to Simulated Space and Martian Conditions". Astrobiology. 11 (1): 65–73. Bibcode:2011AsBio..11...65B. doi:10.1089/ast.2009.0430. PMID 21294638.
  23. ^ Baqué, Mickael; de Vera, Jean-Pierre; Rettberg, Petra; Billi, Daniela (20 August 2013). "The BOSS and BIOMEX space experiments on the EXPOSE-R2 mission: Endurance of the desert cyanobacterium Chroococcidiopsis under simulated space vacuum, Martian atmosphere, UVC radiation and temperature extremes". Acta Astronautica. 91: 180–186. Bibcode:2013AcAau..91..180B. doi:10.1016/j.actaastro.2013.05.015.
  24. ^ a b c d e Cockell, Charles S.; Rettberg, Petra; Rabbow, Elke; Olson-Francis, Karen (19 May 2011). "Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth". The ISME Journal. 5 (10): 1671–1682. Bibcode:2011ISMEJ...5.1671C. doi:10.1038/ismej.2011.46. PMC 3176519. PMID 21593797.
  25. ^ a b Parfenov, G. P.; Lukin, A. A. (1973). "Results and prospects of microbiological studies in outer space". Space Life Sciences. 4 (1): 160–179. Bibcode:1973SLSci...4..160P. doi:10.1007/BF02626350. PMID 4576727. S2CID 11421221.
  26. ^ a b c d e Koike, J. (1996). "Fundamental studies concerning planetary quarantine in space". Advances in Space Research. 18 (1–2): 339–44. Bibcode:1996AdSpR..18a.339K. doi:10.1016/0273-1177(95)00825-Y. PMID 11538982.
  27. ^ Survival and DNA damage of cell-aggregate of Deinococcus spp. exposed to space for two-years in Tanpopo mission. Kawaguchi, Yuko; Hashimoto, Hirofumi; Yokobori, Shin-ichi; Yamagishi, Akihiko; Shibuya, Mio; Kinoshita, Iori; Hayashi, Risako; Yatabe, Jun; Narumi, Issay; Fujiwara, Daisuke; Murano, Yuka. 42nd COSPAR Scientific Assembly. Held 14–22 July 2018, in Pasadena, California, USA, Abstract id. F3.1-5-18. July 2018.
  28. ^ Yamagishi Akihiko, Kawaguchi Yuko, Hashimoto Hirofumi, Yano Hajime, Imai Eiichi, Kodaira Satoshi, Uchihori Yukio, Nakagawa Kazumichi (2018). "Environmental Data and Survival Data of Deinococcus aetherius from the Exposure Facility of the Japan Experimental Module of the International Space Station Obtained by the Tanpopo Mission". Astrobiology. 18 (11): 1369–1374. Bibcode:2018AsBio..18.1369Y. doi:10.1089/ast.2017.1751. PMID 30289276. S2CID 52920452.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  29. ^ BOSS on EXPOSE-R2-Comparative Investigations on Biofilm and Planktonic cells of Deinococcus geothermalis as Mission Preparation Tests. EPSC Abstracts. Vol. 8, EPSC2013-930, 2013. European Planetary Science Congress 2013.
  30. ^ a b Dose, K. (1995). "ERA-experiment "space biochemistry"". Advances in Space Research. 16 (8): 119–29. Bibcode:1995AdSpR..16h.119D. doi:10.1016/0273-1177(95)00280-R. PMID 11542696.
  31. ^ Mastrapa, R. M. E; Glanzberg, H.; Head, J. N; Melosh, H. J; Nicholson, W. L (2001). "Survival of bacteria exposed to extreme acceleration: Implications for panspermia". Earth and Planetary Science Letters. 189 (1–2): 1–8. Bibcode:2001E&PSL.189....1M. doi:10.1016/S0012-821X(01)00342-9.
  32. ^ De La Vega, U. P.; Rettberg, P.; Reitz, G. (2007). "Simulation of the environmental climate conditions on martian surface and its effect on Deinococcus radiodurans". Advances in Space Research. 40 (11): 1672–1677. Bibcode:2007AdSpR..40.1672D. doi:10.1016/j.asr.2007.05.022.
  33. ^ Strickland, Ashley (26 August 2020). "Bacteria from Earth can survive in space and could endure the trip to Mars, according to new study". CNN News. Retrieved 26 August 2020.
  34. ^ Kawaguchi, Yuko; et al. (26 August 2020). "DNA Damage and Survival Time Course of Deinococcal Cell Pellets During 3 Years of Exposure to Outer Space". Frontiers in Microbiology. 11: 2050. doi:10.3389/fmicb.2020.02050. PMC 7479814. PMID 32983036.
  35. ^ Young, R. S.; Deal, P. H.; Bell, J.; Allen, J. L. (1964). "Bacteria under simulated Martian conditions". Life Sciences in Space Research. 2: 105–11. PMID 11881642.
  36. ^ a b c d Grigoryev, Y. G. (1972). "Influence of Cosmos 368 space flight conditions on radiation effects in yeasts, hydrogen bacteria and seeds of lettuce and pea". Life Sciences in Space Research. 10: 113–8. PMID 11898831.
  37. ^ Willis, M.; Ahrens, T.; Bertani, L.; Nash, C. (2006). "Bugbuster—survivability of living bacteria upon shock compression". Earth and Planetary Science Letters. 247 (3–4): 185–196. Bibcode:2006E&PSL.247..185W. doi:10.1016/j.epsl.2006.03.054.
  38. ^ a b c d e de Vera, J. P.; Dulai, S.; Kereszturi, A.; Koncz, L.; Pocs, T. (17 October 2013). "Results on the survival of cryptobiotic cyanobacteria samples after exposure to Mars-like environmental conditions". International Journal of Astrobiology. 13 (1): 35–44. Bibcode:2014IJAsB..13...35D. doi:10.1017/S1473550413000323. S2CID 83647440.
  39. ^ a b Mancinelli, R. L.; White, M. R.; Rothschild, L. J. (1998). "Biopan-survival I: Exposure of the osmophiles Synechococcus SP. (Nageli) and Haloarcula SP. To the space environment". Advances in Space Research. 22 (3): 327–334. Bibcode:1998AdSpR..22..327M. doi:10.1016/S0273-1177(98)00189-6.
  40. ^ Imshenetskiĭ, A. A.; Kuzyurina, L. A.; Yakshina, V.M. (1979). "Xerophytic microorganisms multiplying under conditions close to Martian ones". Mikrobiologiia. 48 (1): 76–9. PMID 106224.
  41. ^ a b c d e Hawrylewicz, E.; Hagen, C. A.; Tolkacz, V.; Anderson, B. T.; Ewing, M. (1968). "Probability of growth pG of viable microorganisms in Martian environments". Life Sciences in Space Research VI. pp. 146–156.
  42. ^ a b c d e f g Zhukova, A. I.; Kondratyev, I. I. (1965). "On artificial Martian conditions reproduced for microbiological research". Life Sciences in Space Research. 3: 120–6. PMID 12199257.
  43. ^ Jänchena, Jochen; Feyha, Nina; Szewzyka, Ulrich; de Vera, Jean-Pierre P. (3 August 2015). "Provision of water by halite deliquescence for Nostoc commune biofilms under Mars relevant surface conditions". International Journal of Astrobiology. 15 (2): 107–118. Bibcode:2016IJAsB..15..107J. doi:10.1017/S147355041500018X.
  44. ^ Burchell, M. (2001). "Survivability of Bacteria in Hypervelocity Impact". Icarus. 154 (2): 545–547. Bibcode:2001Icar..154..545B. doi:10.1006/icar.2001.6738.
  45. ^ Raktim, Roy; Phani, Shilpa P.; Sangram, Bagh (1 September 2016). "A Systems Biology Analysis Unfolds the Molecular Pathways and Networks of Two Proteobacteria in Spaceflight and Simulated Microgravity Conditions". Astrobiology. 16 (9): 677–689. Bibcode:2016AsBio..16..677R. doi:10.1089/ast.2015.1420. PMID 27623197.
  46. ^ Roten, C. A.; Gallusser, A.; Borruat, G. D.; Udry, S. D.; Karamata, D. (1998). "Impact resistance of bacteria entrapped in small meteorites". Bulletin de la Société Vaudoise des Sciences Naturelles. 86 (1): 1–17.
  47. ^ a b c d Koike, J.; Oshima, T.; Kobayashi, K.; Kawasaki, Y. (1995). "Studies in the search for life on Mars". Advances in Space Research. 15 (3): 211–4. Bibcode:1995AdSpR..15c.211K. doi:10.1016/S0273-1177(99)80086-6. PMID 11539227.
  48. ^ "Expose-R: Exposure of Osmophilic Microbes to Space Environment". NASA. 26 April 2013. Archived from the original on 7 April 2013. Retrieved 2013-08-07.
  49. ^ a b Mancinelli, R. L. (January 2015). "The affect [sic] of the space environment on the survival of Halorubrum chaoviator and Synechococcus (Nägeli): data from the Space Experiment OSMO on EXPOSE-R". International Journal of Astrobiology. 14 (Special Issue 1): 123–128. Bibcode:2015IJAsB..14..123M. doi:10.1017/S147355041400055X. S2CID 44120218. Retrieved 2015-05-09.
  50. ^ Klementiev, K. E.; Maksimov, E. G.; Gvozdev, D. A.; Tsoraev, G. V.; et al. (2019). "Radioprotective role of cyanobacterial phycobilisomes". Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1860 (2): 121–128. doi:10.1016/j.bbabio.2018.11.018. PMID 30465750.
  51. ^ a b Stan-Lotter, H. (2002). "Astrobiology with haloarchaea from Permo-Triassic rock salt". International Journal of Astrobiology. 1 (4): 271–284. Bibcode:2002IJAsB...1..271S. doi:10.1017/S1473550403001307. S2CID 86665831.
  52. ^ Shiladitya DasSarma. "Extreme Halophiles Are Models for Astrobiology". American Society for Microbiology. Archived from the original on 2011-07-22.
  53. ^ a b "Expose-R: Exposure of Osmophilic Microbes to Space Environment". NASA. 26 April 2013. Archived from the original on 7 April 2013. Retrieved 2013-08-07.
  54. ^ a b c Morozova, D.; Möhlmann, D.; Wagner, D. (2006). "Survival of Methanogenic Archaea from Siberian Permafrost under Simulated Martian Thermal Conditions" (PDF). Origins of Life and Evolution of Biospheres. 37 (2): 189–200. Bibcode:2007OLEB...37..189M. doi:10.1007/s11084-006-9024-7. PMID 17160628. S2CID 15620946.
  55. ^ Sarantopoulou, E.; Gomoiu, I.; Kollia, Z.; Cefalas, A.C. (2011). "Interplanetary survival probability of Aspergillus terreus spores under simulated solar vacuum ultraviolet irradiation" (PDF). Planetary and Space Science. 59 (1): 63–78. Bibcode:2011P&SS...59...63S. doi:10.1016/j.pss.2010.11.002. hdl:10442/15561.
  56. ^ Novikova, N.; Deshevaya, E.; Levinskikh, M.; Polikarpov, N.; Poddubko, S. (January 2015). "Study of the effects of the outer space environment on dormant forms of microorganisms, fungi and plants in the 'Expose-R' experiment". International Journal of Astrobiology. 14 (1): 137–142. Bibcode:2015IJAsB..14..137N. doi:10.1017/S1473550414000731. S2CID 85458386.
  57. ^ Sarantopoulou, E.; Stefi, A.; Kollia, Z.; Palles, D.; Petrou, .P.S.; Bourkoula, A.; Koukouvinos, G.; Velentzas, A.D.; Kakabakos, S.; Cefalas, A.C. (2014). "Viability of Cladosporium herbarum spores under 157 nm laser and vacuum ultraviolet irradiation, low temperature (10 K) and vacuum". Journal of Applied Physics. 116 (10): 104701. Bibcode:2014JAP...116j4701S. doi:10.1063/1.4894621.
  58. ^ a b Wall, Mike (January 29, 2016). "Fungi Survive Mars-Like Conditions On Space Station". Space.com. Retrieved 2016-01-29.
  59. ^ BIOMEX Experiment: Ultrastructural Alterations, Molecular Damage and Survival of the Fungus Cryomyces antarcticus after the Experiment Verification Tests. Claudia Pacelli, Laura Selbmann, Laura Zucconi, Jean-Pierre De Vera, Elke Rabbow, Gerda Horneck, Rosa de la Torre, Silvano Onofri. Origins of Life and Evolution of Biospheres. June 2017, Volume 47, Issue 2, pp 187–202
  60. ^ Häder DP, Richter PR, Strauch SM, et al. (2006). "Aquacells — Flagellates under long-term microgravity and potential usage for life support systems". Microgravity Sci. Technol. 18 (210): 210–214. Bibcode:2006MicST..18..210H. doi:10.1007/BF02870411. S2CID 121659796.
  61. ^ Nasir A, Strauch SM, Becker I, Sperling A, Schuster M, Richter PR, Weißkopf M, Ntefidou M, Daiker V, An YA, Li XY, Liu YD, Lebert M, Legué V (2014). "The influence of microgravity on Euglena gracilis as studied on Shenzhou 8". Plant Biol J. 16: 113–119. Bibcode:2014PlBio..16S.113N. doi:10.1111/plb.12067. PMID 23926886.
  62. ^ Strauch Sebastian M., Becker Ina, Pölloth Laura, Richter Peter R., Haag Ferdinand W. M., Hauslage Jens, Lebert Michael (2018). "Restart capability of resting-states of Euglena gracilis after 9 months of dormancy: preparation for autonomous space flight experiments". International Journal of Astrobiology. 17 (2): 101–111. Bibcode:2018IJAsB..17..101S. doi:10.1017/S1473550417000131. S2CID 90868067.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  63. ^ Strauch S.M., Richter P., Schuster M., Häder D.-P. (2010). "The beating pattern of the flagellum of Euglena gracilis under altered gravity during parabolic flights". Journal of Plant Physiology. 167 (1): 41–46. doi:10.1016/j.jplph.2009.07.009. PMID 19679374.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  64. ^ Pasini, J. L. S.; Price, M. C. (2015). Panspermia survival scenarios for organisms that survive typical hypervelocity solar system impact events (PDF). 46th Lunar and Planetary Science Conference.
  65. ^ Pasini D. L. S. et al. LPSC44, 1497. (2013).
  66. ^ Pasini D. L. S. et al. EPSC2013, 396. (2013).
  67. ^ Zimmermann, M. W.; Gartenbach, K. E.; Kranz, A. R. (1994). "First radiobiological results of LDEF-1 experiment A0015 with Arabidopsis seed embryos and Sordaria fungus spores". Advances in Space Research. 14 (10): 47–51. Bibcode:1994AdSpR..14j..47Z. doi:10.1016/0273-1177(94)90449-9. PMID 11539984.
  68. ^ a b c Sánchez, Francisco Javier; Meeßen, Joachim; Ruiza, M. del Carmen; Sancho, Leopoldo G.; de la Torre, Rosa (6 September 2013). "UV-C tolerance of symbiotic Trebouxia sp. in the space-tested lichen species Rhizocarpon geographicum and Circinaria gyrosa: role of the hydration state and cortex/screening substances". International Journal of Astrobiology. 13 (1): 1–18. Bibcode:2014IJAsB..13....1S. doi:10.1017/S147355041300027X.
  69. ^ Neuberger, Katja; Lux-Endrich, Astrid; Panitz, Corinna; Horneck, Gerda (January 2015). "Survival of Spores of Trichoderma longibrachiatum in Space: data from the Space Experiment SPORES on EXPOSE-R". International Journal of Astrobiology. 14 (Special Issue 1): 129–135. Bibcode:2015IJAsB..14..129N. doi:10.1017/S1473550414000408. S2CID 121455217.
  70. ^ Raggio, J. (2011). "Whole Lichen Thalli Survive Exposure to Space Conditions: Results of Lithopanspermia Experiment withAspicilia fruticulosa". Astrobiology. 11 (4): 281–92. Bibcode:2011AsBio..11..281R. doi:10.1089/ast.2010.0588. PMID 21545267.
  71. ^ Meeßen, J.; Wuthenow, P.; Schille, P.; Rabbow, E.; de Vera, J.-P.P (August 2015). "Resistance of the Lichen Buellia frigida to Simulated Space Conditions during the Preflight Tests for BIOMEX—Viability Assay and Morphological Stability". Astrobiology. 15 (8): 601–615. Bibcode:2015AsBio..15..601M. doi:10.1089/ast.2015.1281. PMC 4554929. PMID 26218403.
  72. ^ Rosa, Zélia Miller Ana, Cubero Beatriz, Martín-Cerezo M. Luisa, Raguse Marina, Meeßen Joachim (2017). "The Effect of High-Dose Ionizing Radiation on the Astrobiological Model Lichen Circinaria gyrosa". Astrobiology. 17 (2): 145–153. Bibcode:2017AsBio..17..145D. doi:10.1089/ast.2015.1454. PMID 28206822.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  73. ^ de La Torre Noetzel, R. (2007). "BIOPAN experiment LICHENS on the Foton M2 mission: Pre-flight verification tests of the Rhizocarpon geographicum-granite ecosystem". Advances in Space Research. 40 (11): 1665–1671. Bibcode:2007AdSpR..40.1665D. doi:10.1016/j.asr.2007.02.022.
  74. ^ Sancho, L. G. (2007). "Lichens survive in space: Results from the 2005 LICHENS experiment". Astrobiology. 7 (3): 443–54. Bibcode:2007AsBio...7..443S. doi:10.1089/ast.2006.0046. PMID 17630840.
  75. ^ a b De Vera, J.-P.; Horneck, G.; Rettberg, P.; Ott, S. (2004). "The potential of the lichen symbiosis to cope with the extreme conditions of outer space II: Germination capacity of lichen ascospores in response to simulated space conditions". Advances in Space Research. 33 (8): 1236–43. Bibcode:2004AdSpR..33.1236D. doi:10.1016/j.asr.2003.10.035. PMID 15806704.
  76. ^ Horneck, G. (2008). "Microbial Rock Inhabitants Survive Hypervelocity Impacts on Mars-Like Host Planets: First Phase of Lithopanspermia Experimentally Tested". Astrobiology. 8 (1): 17–44. Bibcode:2008AsBio...8...17H. doi:10.1089/ast.2007.0134. PMID 18237257.
  77. ^ Brandt, Annette; De Vera, Jean-Pierre; Onofri, Silvano; Ott, Sieglinde (2014). "Viability of the lichen Xanthoria elegans and its symbionts after 18 months of space exposure and simulated Mars conditions on the ISS". International Journal of Astrobiology. 14 (3): 411–425. Bibcode:2015IJAsB..14..411B. doi:10.1017/S1473550414000214.
  78. ^ Horneck G, et al. (2008). "Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: first phase of lithopanspermia experimentally tested". Astrobiology. 8 (1): 17–44. Bibcode:2008AsBio...8...17H. doi:10.1089/ast.2007.0134. PMID 18237257.
  79. ^ a b c d Hotchin, J. (1968). "The Microbiology of Space". Journal of the British Interplanetary Society. 21: 122. Bibcode:1968JBIS...21..122H.
  80. ^ Higashibata A (2006). "Decreased expression of myogenic transcription factors and myosin heavy chains in Caenorhabditis elegans muscles developed during spaceflight". Journal of Experimental Biology. 209 (16): 3209–3218. doi:10.1242/jeb.02365. PMID 16888068.
  81. ^ International Caenorhabditis elegans Experiment First Flight-Genomics (ICE-First-Genomics). November 22, 2016.
  82. ^ Pasini D. L. S. et al. LPSC45, 1789. (2014).
  83. ^ Pasini D. L. S. et al. EPSC2014, 67. (2014).
  84. ^ a b Jönsson, K. I.; Rabbow, E.; Schill, Ralph O.; Harms-Ringdahl, M.; Rettberg, P. (2008). "Tardigrades survive exposure to space in low Earth orbit". Current Biology. 18 (17): R729–R731. Bibcode:2008CBio...18.R729J. doi:10.1016/j.cub.2008.06.048. PMID 18786368. S2CID 8566993.
  85. ^ "BIOKon In Space (BIOKIS)". NASA. 17 May 2011. Archived from the original on 17 April 2011. Retrieved 2011-05-24.
  86. ^ Brennard, Emma (17 May 2011). "Tardigrades: Water bears in space". BBC. Retrieved 2011-05-24.
  87. ^ a b Jönsson, K. Ingemar; Wojcik, Andrzej (February 2017). "Tolerance to X-rays and Heavy Ions (Fe, He) in the Tardigrade Richtersius coronifer and the Bdelloid Rotifer Mniobia russeola". Astrobiology. 17 (2): 163–167. Bibcode:2017AsBio..17..163J. doi:10.1089/ast.2015.1462. ISSN 1531-1074. PMID 28206820.