Edit links

Phenacenes are a class of organic compounds consisting of fused aromatic rings. They are polycyclic aromatic hydrocarbons, related to acenes and helicenes from which they differ by the arrangement of the fused rings.

[n]Phenacene Common name Structure
[4]phenacene Chrysene
[5]phenacene Picene
[6]phenacene Fulminene
[7]phenacene

Relevance to organic electronic materials

Aromatic compounds with extended π-conjugated system have attracted attention because of their potential use in organic electronics as organic semiconductors.[1] Of academic interest, pentacene has been widely used as an active layer in organic thin-film field-effect transistors (OFET). The main drawback of pentacene OFET is degradation upon exposure to light and air. On the other hand, [n]phenacenes, an isomeric form of [n]acenes, has been known as a stable compound in which the benzene rings are fused in a zigzag structure. For the past several years, there is renewed interest in synthesis of [n]phenacene derivatives associated with electronic applications in emissive and semi- or superconducting materials.[2][3][4]

Picene ([5]phenacene) can serve as an active layer of a high-performance p-channel organic thin-film FET with very high field-effect mobility μ = 5 cm2/(V⋅s).[5] [7]Phenacene FET shows μ = 0.75 cm2/(V⋅s) and no sensitivity to air. Furthermore, picene doped with potassium and rubidium exhibit superconductivity with a maximum critical temperature TC ≈ 18 K.[4] Thus, [n]phenacenes and their derivatives may play an important role in future fabrication of stable and high-performance electronic devices such as OFET, OLED and organic solar cells. Substituted picenes may serve as an active layer of OFETs.[6]

References

  1. ^ Yamashita, Yoshiro (2009). "Organic semiconductors for organic field-effect transistors". Science and Technology of Advanced Materials. 10 (2): 024313. Bibcode:2009STAdM..10b4313Y. doi:10.1088/1468-6996/10/2/024313. ISSN 1468-6996. PMC 5090443. PMID 27877286.
  2. ^ Komura, N.; Goto, H.; He, X.; Mitamura, H.; Eguchi, R.; Kaji, Y.; Okamoto, H.; Sugawara, Y.; Gohda, S.; Sato, K.; Kubozono, Y. (2012). "Characteristics of [6]phenacene thin film field-effect transistor". Appl. Phys. Lett. 101 (8): 083301. Bibcode:2012ApPhL.101h3301K. doi:10.1063/1.4747201.
  3. ^ Ionkin, A. S.; Marshall, W. J.; Fish, B. M.; Bryman, L. M.; Wang, Y. (2008). "A tetra-substituted chrysene: orientation of multiple electrophilic substitution and use of a tetra-substituted chrysene as a blue emitter for OLEDs". Chem. Commun. (20): 2319. doi:10.1039/b715386d.
  4. ^ a b Mitsuhashi, R.; Suzuki, Y.; Yamanari, Y.; Mitamura, H.; Kambe, T.; Ikeda, N.; Okamoto, H.; Fujiwara, A.; Yamaji, M.; Kawasaki, N.; Maniwa, Y.; Kubozono, Y. (2010). "Superconductivity in alkali-metal-doped picene". Nature. 464 (7285): 76–79. Bibcode:2010Natur.464...76M. doi:10.1038/nature08859. PMID 20203605.
  5. ^ Okamoto, H.; Kawasaki, N.; Kaji, Y.; Kubozono, Y.; Fujiwara, A.; Yamaji, M. (2008). "Air-assisted high-performance field-effect transistor with thin films of picene". J. Am. Chem. Soc. 130 (32): 10470–10471. doi:10.1021/ja803291a. PMID 18627146.
  6. ^ Nakano, Y.; Saito, M.; Nakamura, H. WO 2010016511 A1 20100211[clarify], 2010.