Taurus molecular cloud
Nebula
Taurus molecular cloud (Herschel Space Observatory)
Observation data: J2000.0[1] epoch
Right ascension04h 41.0m [1]
Declination+25° 52′ [1]
ConstellationTaurus
DesignationsHCL 2, Heiles's cloud 2, TMC-1, Taurus molecular cloud 1[1]
See also: Lists of nebulae
This video begins with a wide-field view of the sky, before zooming into the Taurus molecular cloud region, about 450 light-years from Earth. Dark clouds of cosmic dust grains obscure the background stars at visible wavelengths. The submillimetre-wavelength observations from the LABOCA camera on APEX reveal the heat glow of the dust grains, shown here in orange tones. The observations cover two regions in the cloud, which are known as Barnard 211 and Barnard 213. In them, newborn stars are hidden, and dense clouds of gas are on the verge of collapsing to form yet more stars.
This video pans over part of the Taurus molecular cloud region.

The Taurus molecular cloud (TMC-1) is an interstellar molecular cloud in the constellations Taurus and Auriga. This cloud hosts a stellar nursery containing hundreds of newly formed stars.[2] The Taurus molecular cloud is only 140 pc (430 ly) away from Earth, making it possibly the nearest large star formation region. It has been important in star formation studies at all wavelengths.[3]

It is notable for containing many complex molecules, such as cyanopolyynes HCnN for n = 3,5,7,9,[4] and cumulene carbenes H2Cn for n = 3–6.[5]

The Taurus molecular cloud was identified in the past as a part of the Gould Belt, a large structure surrounding the solar system. More recently (January 2020) the Taurus molecular cloud was identified as being part of the much larger Radcliffe wave, a wave-shaped structure in the local arm of the Milky Way.

The newly formed stars in this cloud have an age of 1–2 million years.[6] The Taurus–Auriga association, which is the stellar association of the cloud, contains the variable star T Tauri, which is the prototype of T Tauri stars.[7] The many young stars and the close proximity to earth make it uniquely well-suited to search for protoplanetary disks and exoplanets around stars, and to identify brown dwarfs in the association. Members of this region are suited for direct imaging of young exoplanets, which glow brightly in infrared wavelengths.

Members[7][8] of the Taurus–Auriga association with a circumstellar disk or exoplanet:

Main dark nebulae of the Solar apex half of the galactic plane, with the Taurus molecular cloud at the left edge.

See also

References

  1. ^ a b c d "TMC-1 – Molecular Cloud". SIMBAD. Retrieved 2014-03-14.
  2. ^ Luhman, K. L.; Allen, P. R.; Espaillat, C.; Hartmann, L.; Calvet, N. (2010). "The Disk Population of the Taurus Star-Forming Region". The Astrophysical Journal Supplement Series. 186 (1): 111–174. arXiv:0911.5457. Bibcode:2010ApJS..186..111L. doi:10.1088/0067-0049/186/1/111. ISSN 0067-0049. S2CID 119189843.
  3. ^ Guedel, M.; Briggs, K. R.; Arzner, K.; et al. (2007). "The XMM-Newton Extended Survey of the Taurus Molecular Cloud (XEST)". Astronomy and Astrophysics. 468 (2): 353–377. arXiv:astro-ph/0609160. Bibcode:2007A&A...468..353G. doi:10.1051/0004-6361:20065724. S2CID 8846597.
  4. ^ Freeman, A.; Millar, T. J. (1983). "Formation of complex molecules in TMC-1". Nature. 301 (5899): 402–404. Bibcode:1983Natur.301..402F. doi:10.1038/301402a0. ISSN 0028-0836. S2CID 26107828.
  5. ^ Cabezas, C.; Tercero, B.; Agúndez, M.; et al. (2021). "Cumulene carbenes in TMC-1: Astronomical discovery of l-H2C5". Astronomy & Astrophysics. 650: L9. arXiv:2106.00635. Bibcode:2021A&A...650L...9C. doi:10.1051/0004-6361/202141274. ISSN 0004-6361. PMC 7611420. PMID 34334798.
  6. ^ Kenyon, Scott J.; Hartmann, Lee (November 1995). "Pre-Main-Sequence Evolution in the Taurus–Auriga Molecular Cloud". Astrophysical Journal Supplement Series. 101: 117. Bibcode:1995ApJS..101..117K. doi:10.1086/192235. ISSN 0067-0049.
  7. ^ a b Gagné, Jonathan; Mamajek, Eric E.; Malo, Lison; Riedel, Adric; Rodriguez, David; Lafrenière, David; Faherty, Jacqueline K.; Roy-Loubier, Olivier; Pueyo, Laurent; Robin, Annie C.; Doyon, René (March 2018). "BANYAN. XI. The BANYAN Σ Multivariate Bayesian Algorithm to Identify Members of Young Associations with 150 pc". Astrophysical Journal. 856 (1): 23. arXiv:1801.09051. Bibcode:2018ApJ...856...23G. doi:10.3847/1538-4357/aaae09. ISSN 0004-637X.
  8. ^ Kwon, Woojin; Looney, Leslie W.; Mundy, Lee G. (October 2011). "Resolving the Circumstellar Disk of Hl Tauri at Millimeter Wavelengths". The Astrophysical Journal. 741 (1): 3. arXiv:1107.5275. Bibcode:2011ApJ...741....3K. doi:10.1088/0004-637X/741/1/3. ISSN 0004-637X. S2CID 118525138.
  9. ^ "V1298 Tau". exoplanetarchive.ipac.caltech.edu. Retrieved 2020-02-21.
  10. ^ David, Trevor J.; Petigura, Erik A.; Luger, Rodrigo; Foreman-Mackey, Daniel; Livingston, John H.; Mamajek, Eric E.; Hillenbrand, Lynne A. (November 2019). "Four Newborn Planets Transiting the Young Solar Analog V1298 Tau". Astrophysical Journal Letters. 885 (1): L12. arXiv:1910.04563. Bibcode:2019ApJ...885L..12D. doi:10.3847/2041-8213/ab4c99. ISSN 0004-637X. S2CID 204008446.