Edit links
Victor Malka
Born
NationalityFrench
EducationÉcole Polytechnique (Ph.D.)
Known forLaser Plasma Acceleration
Awards
Scientific career
FieldsPlasma physics

Victor Malka (born 1960 in Casablanca, Morocco) is a French plasma physicist and a pioneer in laser plasma acceleration. In 2004, Malka demonstrated that high energy monoenergetic electron beams could be generated using the technique of laser wakefield acceleration,[1] and subsequently used them to develop compact X-ray and gamma radiation sources with applications in medicine, security technology and phase-contrast imaging.[2][3][4] For these contributions to the field, he was awarded the IEEE Particle Accelerator Science and Technology Award [de] in 2007,[5] the Julius Springer Prize for Applied Physics [de] in 2017,[6] and the Hannes Alfvén Prize in 2019.[7]

Early life and career

Malka came from a Jewish family in Morocco and came to France at the age of six, where he grew up in Marseille and in the Parisian suburbs. He studied at the Ecole nationale supérieure de chimie in Rennes and received his doctorate at the École Polytechnique with a dissertation in atomic and plasma physics. From 1990, he then worked at the École Polytechnique for the French National Centre for Scientific Research (CNRS), and from 2004 as Research Director of the Laboratory for Applied Optics (LOA). From 2003 to 2015, he was a professor at the École Polytechnique. He has been a professor at the Weizmann Institute of Science since 2015.

Publications

References

  1. ^ Faure, J.; Glinec, Y.; Pukhov, A.; Kiselev, S.; Gordienko, S.; Lefebvre, E.; Rousseau, J.-P.; Burgy, F.; Malka, V. (2004). "A laser–plasma accelerator producing monoenergetic electron beams". Nature. 431 (7008): 541–544. Bibcode:2004Natur.431..541F. doi:10.1038/nature02963. ISSN 0028-0836. PMID 15457253. S2CID 4363528.
  2. ^ Malka, Victor; Faure, Jérôme; Gauduel, Yann A.; Lefebvre, Erik; Rousse, Antoine; Phuoc, Kim Ta (2008). "Principles and applications of compact laser–plasma accelerators". Nature Physics. 4 (6): 447–453. Bibcode:2008NatPh...4..447M. doi:10.1038/nphys966. ISSN 1745-2473.
  3. ^ Ta Phuoc, K.; Corde, S.; Thaury, C.; Malka, V.; Tafzi, A.; Goddet, J. P.; Shah, R. C.; Sebban, S.; Rousse, A. (2012). "All-optical Compton gamma-ray source". Nature Photonics. 6 (5): 308–311. arXiv:1301.3973. Bibcode:2012NaPho...6..308T. doi:10.1038/nphoton.2012.82. ISSN 1749-4885. S2CID 3724056.
  4. ^ Corde, S.; Ta Phuoc, K.; Lambert, G.; Fitour, R.; Malka, V.; Rousse, A.; Beck, A.; Lefebvre, E. (2013). "Femtosecond x rays from laser-plasma accelerators". Reviews of Modern Physics. 85 (1): 1–48. arXiv:1301.5066. Bibcode:2013RvMP...85....1C. doi:10.1103/revmodphys.85.1. ISSN 0034-6861. S2CID 36252.
  5. ^ "Nuclear & Plasma Sciences Society | Particle Accelerator Science and Technology (PAST)". ieee-npss.org. Retrieved 2020-06-07.
  6. ^ "Julius Springer Prize for Applied Physics". springer.com. Retrieved 2020-06-07.
  7. ^ "Award of EPS Alfven Prize 2019 to Victor Malka and Toshiki Tajima | e-EPS". www.epsnews.eu. Retrieved 2020-06-07.