Нетканые текстильные материалы — материалы из волокон или нитей, соединённых между собой без применения методов ткачества.

История развития отрасли нетканых материалов

С древнейших времён известны два вида нетканых материалов: ватин и войлок.

Началом эпохи современных нетканых материалов считаются 1930-е годы[1]. Первые образцы были созданы в Европе. Это были полотна из вискозных волокон, скреплённых между собой химическими связующими. Несколько позже были освоены и другие способы их получения, различающиеся как по виду сырья, так и по способу скрепления.

Классификация

Нетканые материалы в зависимости от метода скрепления подразделяются на три класса[1]

  • скреплённые механическим способом;
  • скреплённые физико-химическим способом;
  • скреплённые комбинированным способом

Исходное сырьё

Нетканые материалы вырабатываются как из натуральных (хлопковых, льняных, шерстяных), так и из химических волокон (например, вискозных, полиэфирных, полиамидных, полиакрилонитрильных, полипропиленовых), а также вторичного волокнистого сырья (волокна, регенерированные из лоскута и тряпья) и коротко-волокнистых отходов химической и других отраслей промышленности.

Технологии получения

Основные технологические операции получения нетканых материалов[2][3]:

  • Подготовка сырья (рыхление, очистка от примесей и смешивание волокон, перемотка пряжи и нитей, приготовление связующих, растворов химикатов и т. д.).
  • Формирование волокнистой основы.
  • Скрепление волокнистой основы (непосредственно получение нетканого материала).
  • Отделка нетканого материала.

Способы получения нетканого материала

Основной стадией получения нетканых материалов является стадия скрепления волокнистой основы, получаемой одним из способов: механическим, аэродинамическим, гидравлическим, электростатическим или волокнообразующим.

Способы скрепления нетканых материалов:

  • Химическое или адгезионное скрепление (клеевой способ) — сформованное полотно пропитывается, покрывается или орошается связующим компонентом, нанесение которого может быть сплошным или фрагментированным. Связующий компонент, как правило, применяются в виде водных растворов, в некоторых случаях используют органические растворители.
  • Термическое скрепление — в этом способе используются термопластичные свойства некоторых синтетических волокон. Иногда используются волокна, из которых состоит нетканый материал, но в большинстве случаев в нетканый материал еще на стадии формования специально добавляют небольшое количество волокон с низкой температурой плавления («бикомпонент»).

Механическое (фрикционное) скрепление:

  • иглопробивный способ.
  • вязально-прошивной способ.
  • гидроструйный способ (технология Спанлейс).

Технология Спанлейс

Технология Спанлейс[4] появилась в 1960-х годах, но впервые была официально представлена фирмой DuPont в 1973 году (материал Сонтара®) и была результатом напряжённой работы, проделанной фирмами DuPont и Chicopee. В 1990-х годах струйная технология значительно шагнула вперёд и стала более производительной[5] и доступной для многих производителей нетканых материалов.

Технология гидросплетения основана на переплетении волокон материала высокоскоростными струями воды под высоким давлением. Обычно полотно скрепляется на перфорированном барабане с помощью струй воды, бьющих под высоким давлением из форсуночных балок. За счёт этих струй волокна холста связываются между собой.

Лидером и новатором в области технологии спанлейс является фирма «Rieter».

Иглопробивные материалы

При данной технологии холст формируется из нарезанного («штапельного») волокна либо из непрерывных нитей («филаментов»), полученных из расплава полимера. Волокна формуются из полимера фильерно-раздувным способом и практически одновременно укладываются в холст. Единичные волокна конечной длины («штапельки») в чесальной машине ориентируются преимущественно в горизонтальном направлении и формируются в холст («ватку»).

Впоследствии уложенный холст проходит процедуру скрепления механическим способом путём пробивания полотна иглами специальной конструкции треугольного сечения, с одной либо двух сторон. Целью иглопробивания является уплотнение уложенных филаментов («штапелек») и спутывание их между собой. На данном этапе технологического процесса полотно приобретает свои прочностные свойства, которые могут варьироваться в зависимости от характера дальнейшего применения иглопробивных полотен. При необходимости пробитый холст проходит процедуру дополнительного термоскрепления при помощи каландра. Также для иглопробивных полотен используемых в качестве основы для полимерных покрытий (линолеум, искусственная кожа, кабельная продукция), применяется дополнительное прогревание в промышленных печах, так называемая «усадка».

Иглопробивная технология очень популярна, поскольку полученный по такому способу производства продукт имеет уникальное сочетание прочностных и потребительских характеристик.

Отрасли применения иглопробивных нетканых полотен: геотекстиль, фильтры, линолеум, ковровые покрытия, автомобилестроение, мягкая мебель, искусственная кожа, одежда, обувная промышленность, галантерея.

Мешки из нетканного геотекстиля прочнее мешков из тканых материалов той же толщины[6]

Технология Спанджет

Технология, при которой окончательная фиксация происходит с помощью водных струй под высоким давлением. Прочность готового материала несравнимо выше, чем у нетканого полотна, скреплённого любыми иными способами.

Технология термоскрепления

Суть технологии — воздействие высоких температур (до 180°C) на легкоплавкие полиэфирные волокна в смеси с другими химическими волокнами, посредством многосекционных печей, в которых рубашка лекгоплавких волокон подплавляется и скрепляется с другими волокнами бесклеевым способом.

Технология Струтто

«Strutto» обозначает вертикальную укладку волокон при производстве нетканых материалов.

Технология AirLay

Технология AirLay — это система образования волокон, готовых для иглопробивания и термофиксации. Данная технология предназначена как замена устаревшим кардочесальным машинам и холстоукладчикам. Производительность такой линии позволяет производить около 1500 кг готовой продукции в час. Грамматура производимого материала варьируется от 150 г/м² до 3500 г/м². Использование технологии AirLay разнообразно. Например, автомобильная промышленность, сельское хозяйство, мягкая мебель, строительство, одежда и упаковка.

Технология Айрлайд

Айрлайд — тип нетканых материалов, получивший своё название от способа его производства — воздушная (air) укладка (laid). Представляет собой нетканое полотно из природной целлюлозы хвойных пород древесины, бикомпонентного штапельного волокна и добавок. В отличие от обычного процесса изготовления волокна, айрлайд не использует воду в качестве среды для производства волокна.

Технология Аэродинамика

При аэродинамическом способе расчёсанные волокна увлекаются потоком воздуха и переносятся по каналу (диффузору) на сетчатый барабан или транспортёр, где укладываются с образованием холста бесслойной структуры (неориентированное расположение волокон).

Примечания

  1. Нетканые материалы: вчера, сегодня, завтра. Дата обращения: 25 октября 2018. Архивировано из оригинала 27 декабря 2014 года.
  2. Производство нетканых материалов. Дата обращения: 11 ноября 2009. Архивировано из оригинала 27 октября 2009 года.
  3. А.Ф. Плеханов, Е.И. Битус, Н.А. Виноградова, С.А. Першукова, Ю. В. Братченя. Инновационные технологии нетканых материалов (RU) // Полимерные материалы. — 2019. — № 2. — С. 30-34. Архивировано 29 августа 2019 года.
  4. СПАНЛЕЙС: технология, свойства, применение. Дата обращения: 29 августа 2019. Архивировано 23 сентября 2020 года.
  5. Преимущества технологии спанлейс. Дата обращения: 11 ноября 2009. Архивировано 19 мая 2010 года.
  6. Müller Werner W, Saathoff Fokke. Geosynthetics in geoenvironmental engineering // Science and Technology of Advanced Materials. — 2015. — 20 июня (т. 16, № 3). — С. 034605. — ISSN 1468-6996. — doi:10.1088/1468-6996/16/3/034605. []